COVER PAGE HAS EBEN DELETED

Table of Contents
Introduction And Assumptions	3
Introduction:	3
Assumptions:	3
Program design, pseudocode, and explanation	4
The first file “user management”	4
user management pseudo code	4
User Management Source Code And Explanation	9
The output of this code	15
Now the second file “menu_table_management”	18
Pseudo code for menu_table_management	18
Menu Table Management Source Code And Explanation	21
The output of this code	24
Third file “waiter_services”	27
waiter_services pseudo code	27
Waiter services Source Code And Explanation	38
The output of this code	45
The fourth file “chef services”	49
Chef services pseudo code	49
Chef services Source Code And Explanation	53
The Output of the code	55
The fifth file “ casher”	57
Pseudo-code for cashier file	57
Cashier Service Source Code And Explanation	64
The Output of the code	67
Conclusion:	69
Referencing	70

[bookmark: _Toc161610265]Introduction And Assumptions

[bookmark: _Toc161610266]Introduction:
RPOS (Restaurant Point of Sales System) has been uniquely designed to simplify restaurant operations with a complete system able to function as a central mechanism used to maintain transactional efficiency. The aim of preparing this documentation is to describe both the design procedure, implementation, and the different features of the RPOSS system that cater to the unique requirements of the restaurant managers, waiting staff, chefs, and cashiers.

[bookmark: _Toc161610267]Assumptions:
User Roles and Responsibilities: The system acknowledges the users will each be assigned specific roles whose responsibilities are defined according to their role—managers, waiting staff, chefs for instance, and cashiers.
Modular Design: Being a modular programming system-based system, it is scalable and maintainable. For every module, the component plays a specific role.
Data Storage: All non-raw data relevant to RPOSS will be saved in text files. The system will utilize the keyword data structure (dictionary, list & CSV) for better data management.
Menu and Table Management: The system assumes that managers will have to be responsible for updating changes on the food menu items, prices, and tables. The server will be able to dole out tables, record orders and update the waiting list after contacting the manager who provides real-time updates on available tables and other things.
Food Preparation: Chefs can manage their assigned cooking tasks through a dedicated interface, update the status of orders, and check inventory in real time. Billing and Payment: Cashiers will calculate bills for customers, based on the bills, including service charges and taxes.
Validation and Error Handling: The system will connected with verification blocks to maintain correct user inputs and logical errors, improving the program system reliability.
Additional Features: Though the interior detailedness is defined in the system specification several major options to the set can be added in order to improve the consumer experience and optimize efficiency.
User Interface: The system will respond as directed, without any special attention to the graphical user interface, but only exceptionally.

[bookmark: _Toc161610268]Program design, pseudocode, and explanation
[bookmark: _Toc161610269]The first file “user management”
[bookmark: _Toc161610270]user management pseudo code

1. Import menu_table_management as mtm
2. Import waiter_services
3. Import chef_services
4. Import cashier_services

5. Function authenticate_user()
6. Prompt user to input username and password
7. Try
8. Open 'data/users.txt' file for reading
9. Read each line in the file
10. Split the line into user_id, username, role, and password
11. If username and password match any user in the file
12. Return the role of the authenticated user
13. Handle FileNotFoundError
14. Print "User data file not found."
15. Return None if authentication fails
16. End Function

17. Function show_all_users()
18. Try
19. Open 'data/users.txt' file for reading
20. For each line in the file
21. Split the line into user_id, username, role, and password
22. Print user_id, username, and role
23. Handle FileNotFoundError
24. Print "Users file not found."
25. End Function

26. Function read_users()
27. Initialize an empty list called users
28. Try
29. Open 'data/users.txt' file for reading
30. For each line in the file
31. Split the line into user_id, username, role, and password
32. Append a dictionary containing user details to the users list
33. Handle FileNotFoundError
34. Print "User file not found."
35. Return the list of users
36. End Function

37. Function write_users(users)
38. Open 'data/users.txt' file for writing
39. For each user in the users list
40. Write user details to the file in the
41. format "user_id, username, role, password"
42. End Function

43. Function create_user()
44. Prompt user to input user ID, username, role, and password
45. Read existing users from file using read_users()
46. Append new user details to the list of users
47. Write updated users list to file using write_users()
48. Print "User created successfully."
49. End Function

50. Function assign_user_role()
51. Prompt user to input user ID and new role
52. Read existing users from file using read_users()
53. Find the user with the specified ID
54. If user is found
55. Update user's role with the new role
56. Write updated users list to file using write_users()
57. Print "User role updated successfully."
58. Otherwise, print "User not found."
59. End Function

60. Function update_user_details()
61. Prompt user to input user ID and new username
62. Read existing users from file using read_users()
63. Find the user with the specified ID
64. If user is found
65. Update user's username with the new username
66. Write updated users list to file using write_users()
67. Print "User details updated successfully."
68. Otherwise, print "User not found."
69. End Function

70. Function change_password()
71. Prompt user to input user ID and new password
72. Read existing users from file using read_users()
73. Find the user with the specified ID
74. If user is found
75. Update user's password with the new password
76. Write updated users list to file using write_users()
77. Print "Password changed successfully."
78. Otherwise, print "User not found."
79. End Function

80. Function user_management_menu()
81. Repeat until user chooses to return to main menu
82. Print menu options for user management
83. Prompt user to input choice
84. Based on user's choice, execute corresponding function
85. End Function

86. Function manager_interface()
87. Repeat until user chooses to return to main menu
88. Print menu options for menu and table management
89. Prompt user to input choice
90. Based on user's choice, execute corresponding function
91. End Function

92. Function main_menu()
93. Repeat until user chooses to exit
94. Print main menu options
95. Prompt user to input choice
96. Based on user's choice, execute corresponding function
97. End Function

98. Function main()
99. Authenticate user
100. If authentication is successful
101. If user role is manager
102. Display main menu
103. Else if user role is chef
104. Display chef interface
105. Else if user role is cashier
106. Display cashier interface
107. Else if user role is waiter
108. Display waiter interface
109. Else
110. Print "Unknown role. Exiting."
111. End Function

112. Main program execution
113. Call main() function

[bookmark: _Toc161610271]
User Management Source Code And Explanation

[image: A screen shot of a computer program

Description automatically generated]
authenticate_user():
This is the point where the user must provide the username and password to proceed. After that, the code tries to launch the 'data/users.txt' file for reading. Every line of the file is split by the user_id, title, role and password. If the checker with the given username and password any user in the file and it returns the identity of the authorized user. If the file is not found it will say "User data file not available." If authentication doesn't succeed, it yields None.
show_all_users():
The method is trying to open a file named 'data/users.txt', so it can be read. It parses each line in the file and splits the line to user_id, username, role and password. It further outputs user_id, username and role for each user. If file is not available it will print "No users file found"

[image: A computer screen with many colorful text

Description automatically generated]
read_users():
It will therefore assign an empty list to an object of the type User List, which is users here. It attempts to open the users' information file named 'data/users.txt' for reading. Subsequently, it parses every line; and as a result, it splits lines into user id, username, roles, and passwords, and the dictionary of user information is appended to the users list. If the file is not found, it provides "User file not found." output message. The command ends by calling a function that displays the list of users as well.
write_users():
This working of the function calls for the writing of data in the 'data/users.txt' file. For every user in users list (as an x) it puts user details into the file with the format "user_id, username, role, password" (as a y).
create_user():
By prompting the user to enter their user ID, username, role, and password, this function allows the user to validate their authorization status. It utilizes read_users() function to populate the users it already has from the file. It uses the append() function in the array class to insert the data of users and then calls the write_users() function to write the newly updated list of users to the file. In the end, its code reads, "User created successfully."

assign_user_role():
Then user is prompted to enter the user ID and new role in the role adding function. It reads users, which are in a file, using the read_users() function. It returns the data on the user of these matching ID. If the user is found, it will make the user's history be shown for the new role, write the updated users list into the file by using the write_users() function and the user roles are updated successfully message is printed. The printer eventually says "User not found." if a person does not exist, instead.

[image: A screenshot of a computer screen

Description automatically generated]
update_user_details():
This function lets the user input user id and a new username through it. It receive user list which already exists from the file using the read_users() method. It gets the information specified for the user with a matching ID. When there is a user entry it first updates the username to the new one, and finally writes the updated users list to the file with the help of the write_users() function and prints “User details updated successfully.” If not, it will request User not found.
change_password():
This implementation causes a program to ask the user to kindly provide his or her user ID and his or her new password. It reads bunch of existing users from the file using the function called read_users(). Here a unique number of the user it's looking for gets found. In case of a successful search, it rewrites the user's password to the new password, it invokes the write_users() function to write the updated list of users to the file containing the 'users.txt' file name, and it prints "Password updated successfully". Otherways, it outputs: "User not found."

[image: A screenshot of a computer

Description automatically generated]
[image: A screenshot of a computer

Description automatically generated]
user_management_menu():
It is responsible for issuing a custom menu for user management functions. It repeatedly tells the user to choose options before he will be allowed to go back to the main menu. According to the usage option, it acts out that particular task the user selects.
main_menu():
That functionality is this menu's principal role. It continues with this pattern until it is ended. It asks the user again and again until they select an option to move on their own. The execution of the chosen function is why, according to the user’s decision, it does it.

[image: A screenshot of a computer

Description automatically generated]
[image: A black rectangle with white text

Description automatically generated]
manager_interface():
This function is a menu for table/ menus management operation in the database. A repetitive request to put in the option will be as such followed until user inputs ‘return’ into the main menu. Implementing the chosen command, specifically the corresponding function.
main():
This specifically is called the entrance of the program. The authentication system verifies user identity where applicable and leads the user to the respective interface depending on their job title. This could be the main menu, the chef’s menu, the cashier’s menu, or the waiter’s menu. After getting the role if it is not known to the user, it prints "Unknown role. Exiting."
Main program execution:
The assembly directive links the program to the start with the main() function.
[bookmark: _Toc161573812][bookmark: _Toc161610272]The output of this code

authenticate_user choice
Now I entered the correct manager username and password and this is the output.
[image: A black background with white dots

Description automatically generated]
Now I will try logging in with the wrong username and password.
[image:]

Now in user management show_all_users choice
It will print all the users in the file as shown in the picture below.
[image: A screenshot of a computer

Description automatically generated]

Now let’s try the Create user choice
as you can see in the picture below I created a new user called “test” and is saved successfully in the file users.txt
[image: A screenshot of a computer

Description automatically generated]

Update user role choice
So here as you can see I managed to change the user role from ”manager” to “ waiter” and it also saved successfully in the users.txt file
[image: A screenshot of a computer

Description automatically generated]

Update user details choice
Using this function I can change any username from the users.txt file by the user id here I changed the username from “test” to “new_test”
[image: A screenshot of a computer

Description automatically generated]

Change password choice
with this function, I can change any user password using the id of the user like now I changed the password from “ test” to “password”
[image: A screenshot of a computer

Description automatically generated]

The return to main menu choice just exits this user management interface it it goes back to the manager interface

[bookmark: _Toc161610273]Now the second file “menu_table_management”
[bookmark: _Toc161610274]Pseudo code for menu_table_management

1. Function add_menu_item():
2. Prompt user to input menu item ID, name, and price
3. Open 'data/menu.txt' file for appending
4. Write the menu item details to the file in the format "item_id,name,price"
5. Print "Menu item added successfully."
6. End Function

7. Function update_menu_item():
8. Prompt user to input menu item ID to update, new name, and new price
9. Read existing menu items from the file
10. Initialize a variable 'updated' to False
11. Loop through each item in the menu items list
12. If the item ID matches the specified ID
13. Update the item's name and price with the new values
14. Set 'updated' to True
15. If 'updated' is True
16. Open 'data/menu.txt' file for writing
17. Write the updated menu items back to the file
18. Print "Menu item updated successfully."
19. Else
20. Print "Menu item not found."
21. End Function

22. Function add_table():
23. Prompt user to input a unique table ID and number of pax
24. Set the status to "free" (default status for a new table)
25. Open 'data/tables.txt' file for appending
26. Write the table details to the file in the format "table_id,pax,status"
27. Print "Table added successfully."
28. End Function

29. Function update_table():
30. Prompt user to input table ID to update and new number of pax
31. Initialize a variable 'updated' to False
32. Initialize an empty list 'tables'
33. Try
34. Open 'data/tables.txt' file for reading
35. Loop through each line in the file
36. Split the line into parts: table_id, pax, status
37. If the table ID matches the specified ID
38. Update the number of pax with the new value
39. Set 'updated' to True
40. Append the line (either updated or not) to the 'tables' list
41. If 'updated' is True
42. Open 'data/tables.txt' file for writing
43. Write the updated table details back to the file
44. Print "Table updated successfully."
45. Else
46. Print "Table not found."
47. Except FileNotFoundError
48. Print "Tables file not found."
49. End Function

50. Function show_available_tables():
51. Print "Available Tables:"
52. Try
53. Open 'data/tables.txt' file for reading
54. Loop through each line in the file
55. Split the line into parts: table_id, pax, status
56. If the status is "free"
57. Print the table ID, number of pax, and status
58. Except FileNotFoundError
59. Print "Tables file not found."
60. End Function

61. Function cancel_block_order():
62. Prompt user to input menu item ID to cancel/block
63. Read existing menu items from the file
64. Initialize a variable 'blocked' to False
65. Loop through each item in the menu items list
66. If the item ID matches the specified ID
67. Append "blocked" to the item to indicate it's blocked
68. Set 'blocked' to True
69. If 'blocked' is True
70. Open 'data/menu.txt' file for writing
71. Write the updated menu items back to the file
72. Print "Menu item blocked successfully."
73. Else
74. Print "Menu item not found."
75. End Function

[bookmark: _Toc161610275]Menu Table Management Source Code And Explanation

[image: A screen shot of a computer program

Description automatically generated]
add_menu_item():
Prompts the user to give item ID, its name, and price. Writes to the 'data/menu.txt' file in append mode. Provide the dish details into the file. Added a menu item: "Menu item added successfully."
update_menu_item():
Users are required to enter the menu item ID they would be updating, the new name, and the new price. Goes through the list of existing dishes in the current menu. Changes the menu item as specified with the new name and price. The updated menu items should be written back to the file. Prints "Successfully updated the menu item"
add_table():
Starts by getting the user to provide a personalized table ID and number of pax. It sets the flag to "free" (the initial status for the new table). Add new records to the data table in "data/tables.txt". Writes the details of the table to the file. Prints "Table added successfully."

[image: A screen shot of a computer program

Description automatically generated]
[image: A screen shot of a computer code

Description automatically generated]
add_table():
Directs the user to enter specific table identification and number of pax. Sets the status value to "free" (for "free" - the default table status). Prepends into the file named 'data/tables.txt'. Save the details in the file. Prints "Table added successfully."
 update_table():
Query the user for the table ID to update, input the new number of pax. Takes a look at the current table details from the specified file. Updates the given table with the new quantity irrespective of pax. Writes the up-to-date details concerning the file back into the file. Prints "Table updated successfully."
show_available_tables():
Prints the available tables by reading the 'data/tables.txt' file. Filters and displays only the tables with the status "free."
[image: A screen shot of a computer program

Description automatically generated]
cancel_block_order():
 There will be a prompt on the screen requesting the user to key in the menu item ID to be used for cancellation/blocking. Get_menu_items from the file. Adds the mentioned menu item to "Block list." Writes the updated menu item listings back to the file. "Menu item blocked successfully - printing."

[bookmark: _Toc161610276]The output of this code

Add menu item choice
As you can see I managed to add a new item to the menu successfully
[image: A screenshot of a computer

Description automatically generated]
Update menu item choice
So in this function, by the item ID, I can change its name and price as you can see in the picture below I changed the item “orange” to “fresh orange juice” and the price from “3” to “5” And its updated successfully
[image: A screenshot of a computer

Description automatically generated]

Add table choice
As you can see I added a new table to the system and its called “B2” and I specified the number of pax to be “4” and this will be saved in the tables.txt file
[image: A screenshot of a computer

Description automatically generated]

Update table choice
In this function, I will use the table ID to edit it like adding more chars so it can have more pax, and in the picture below I changed the “B2” table to have “6” pax
[image: A screenshot of a computer

Description automatically generated]
Show available tables choice
This will print all the free tables in the tables.txt any occupied tables won’t be printed
[image:]

Cancel or block order choice
in this function, I can block menu items also by their id I choose to block pizza now pizza is no longer available in the customer menu
[image: A screenshot of a computer

Description automatically generated]

The return to main menu choice just exits this user management interface it goes back to the manager interface

[bookmark: _Toc161610277]Third file “waiter_services”
[bookmark: _Toc161610278]waiter_services pseudo code

1. Function display_orders():
2. Print "ready-made orders:"
3. Try
4. Open 'data/orders.txt' file for reading
5. Loop through each line in the file
6. If the line is empty or doesn't contain enough comma-separated values
7. Continue to the next iteration
8. Split the line into parts: order_id, table_id, waiter_id, status, details
9. If status equals "ready_to_serve"
10. Print order details
11. Except FileNotFoundError
12. Print "Orders file not found. Please ensure the 'data/orders.txt' file exists."
13. End Function

14. Function generate_next_order_id():
15. Try
16. Open 'data/orders.txt' file for reading
17. Extract order IDs from each line in the file
18. Calculate the next order ID by incrementing the maximum order ID by 1
19. Except FileNotFoundError
20. Set next_order_id to 1
21. Return next_order_id
22. End Function

23. Function show_available_tables():
24. Print "Available Tables:"
25. Try
26. Open 'data/tables.txt' file for reading
27. Loop through each line in the file
28. Split the line into parts: table_id, pax, status
29. If status equals "free"
30. Print table details
31. Except FileNotFoundError
32. Print "Tables file not found. Please ensure the 'data/tables.txt' file exists."
33. End Function

34. Function is_valid_table(table_id):
35. Try
36. Open 'data/tables.txt' file for reading
37. Loop through each line in the file
38. Split the line into parts: id, _, _
39. If id equals table_id
40. Return True
41. Return False
42. Except FileNotFoundError
43. Print "Tables file not found. Please ensure the 'data/tables.txt' file exists."
44. Return False
45. Return False
46. End Function

47. Function check_in_customer():
48. show_available_tables()
49. table_id = input("Enter the table ID to check in customer: ")
50. If not is_valid_table(table_id)
51. Print "Invalid table ID."
52. Return
53. While True:
54. pax_input = input("Enter number of pax: ")
55. If pax_input.isdigit() and int(pax_input) > 0
56. customer_pax = int(pax_input)
57. Break
58. Else
59. Print "Invalid input. Please enter a valid number for the number of pax."
60. waiter_id = input("Enter your Waiter/Waitress ID: ")
61. updated = False
62. tables = []
63. Try
64. Open 'data/tables.txt' file for reading
65. Loop through each line in the file
66. Split the line into parts: table_id_file, pax, status
67. If table_id_file equals table_id
68. If status equals "free" and int(pax) >= customer_pax
69. Append f"{table_id},{pax},occupied,{waiter_id}\n" to tables list
70. Set updated to True
71. Else
72. Append line to tables list
73. Else
74. Append line to tables list
75. If updated
76. Open 'data/tables.txt' file for writing
77. Write tables list to the file
78. Print f"Customer checked in at Table {table_id}."
79. Call take_order(table_id, customer_pax, waiter_id)
80. Else
81. Print "Unable to check in customer. Please ensure the table is available and can accommodate the pax."
82. Except FileNotFoundError
83. Print "Tables file not found. Please ensure the 'data/tables.txt' file exists."
84. End Function

85. Function read_menu_items():
86. menu_items = []
87. Try
88. Open 'data/menu.txt' file for reading
89. Loop through each line in the file
90. Split the line into parts: _, item_name, _
91. Append item_name to menu_items list
92. Except FileNotFoundError
93. Print "Menu file not found. Please ensure the 'data/menu.txt' file exists."
94. Return menu_items
95. End Function

96. Function read_menu_items_with_prices():
97. menu_items = {}
98. Try
99. Open 'data/menu.txt' file for reading
100. Loop through each line in the file
101. Split the line into parts: _, item_name, item_price, _
102. If item_price is not "blocked"
103. Add item_name as key and item_price as value to menu_items dictionary
104. Except FileNotFoundError
105. Print "Menu file not found. Please ensure the 'data/menu.txt' file exists."
106. Return menu_items
107. End Function

108. Function take_order(table_id, customer_pax, waiter_id):
109. Print f"Taking orders for {customer_pax} customers at Table {table_id} served by Waiter/Waitress ID {waiter_id}."
110. menu_items_with_prices = read_menu_items_with_prices()
111. orders = []
112. For i in range(customer_pax):
113. Print "Available menu items:"
114. For item, price in menu_items_with_prices.items():
115. Print f"{item}: {price}"
116. While True:
117. item_name = input(f"Enter order for customer {i+1}: ")
118. If item_name in menu_items_with_prices
119. quantity = input(f"Enter quantity for {item_name}: ")
120. Try
121. quantity = int(quantity)
122. item_price = float(menu_items_with_prices[item_name]) * quantity
123. order_id = generate_next_order_id()
124. order_line = f"{order_id},{table_id},{waiter_id},received,{item_name},{quantity},{item_price:.2f}\n"
125. Append order_line to orders list
126. Print f"Added {quantity} of {item_name} to the order at total price {item_price:.2f}."
127. Break
128. Except ValueError
129. Print "Invalid quantity. Please enter a numeric value."
130. Else
131. Print "This item is not available. Please choose an available item from the menu."
132. Try
133. Open 'data/orders.txt' file for appending
134. Write orders list to the file
135. Print "Orders successfully taken and recorded."
136. Call chef_services.chef_interface()
137. Except Exception as e
138. Print f"Error recording orders: {e}"
139. End Function

140. Function update_order_status(order_id, new_status):
141. updated = False
142. orders = []
143. Try
144. Open 'data/orders.txt' file for reading
145. Loop through each line in the file
146. If the line is empty or doesn't contain enough comma-separated values
147. Continue to the next iteration
148. Split the line into parts: id, _, _, _, _, _, _
149. If id equals order_id
150. Append f"{id},{table_id},{waiter_id},{new_status},{item_name},{quantity},{total_price}\n" to orders list
151. Set updated to True
152. Else
153. Append line to orders list
154. If updated
155. Open 'data/orders.txt' file for writing
156. Write orders list to the file
157. Print f"Order {order_id} updated to {new_status}."
158. Else
159. Print "Order ID not found."
160. Except FileNotFoundError
161. Print "Orders file not found. Please ensure the 'data/orders.txt' file exists."
162. End Function

163. Function update_order_status_to_served():
164. order_id = input("Enter the order ID to mark as served: ")
165. Call update_order_status(order_id, "served")
166. End Function

167. Function check_out_customer():
168. table_id = input("Enter the table ID to check out: ")
169. Call update_table_status(table_id, "needs_cleaning")
170. Print f"Table {table_id} marked for cleaning."
171. End Function

172. Function clean_table():
173. table_id = input("Enter the table ID to mark as clean: ")
174. Call update_table_status(table_id, "free")
175. Print f"Table {table_id} is now free and clean."
176. End Function

177. Function update_table_status(table_id, new_status):
178. updated = False
179. tables = []
180. Try
181. Open 'data/tables.txt' file for reading
182. Loop through each line in the file
183. Split the line into parts: id, _, _
184. If id equals table_id
185. If new_status equals "free"
186. Append f"{id},{pax},{new_status}\n" to tables list
187. Else
188. Append f"{id},{pax},{new_status}" to tables list
189. Set updated to True
190. Else
191. Append line to tables list
192. If updated
193. Open 'data/tables.txt' file for writing
194. Write tables list to the file
195. Print f"Table {table_id} status updated to {new_status}."
196. Else
197. Print "Table ID not found."
198. Except FileNotFoundError
199. Print "Tables file not found. Please ensure the 'data/tables.txt' file exists."
200. End Function

201. Function is_table_free(table_id):
202. Try
203. Open 'data/tables.txt' file for reading
204. Loop through each line in the file
205. Split the line into parts: id, _, status
206. If id equals table_id
207. Return status equals "free"
208. Except FileNotFoundError
209. Print "Tables file not found. Please ensure the 'data/tables.txt' file exists."
210. Return False
211. Return False
212. End Function

213. Function accept_reservation():
214. While True
215. table_id = input("Enter table ID for the reservation: ")
216. If is_table_free(table_id)
217. Break
218. Else
219. Print "This table is not available. Please choose another table."
220. Continue_choice = input("Try another table? (yes/no): ").lower()
221. If continue_choice is not 'yes'
222. Print "Reservation cancelled."
223. Return
224. customer_name = input("Enter customer name: ")
225. contact_number = input("Enter contact number: ")
226. number_of_pax = input("Enter number of pax: ")
227. reservation_date_time = input("Enter reservation date and time (YYYY-MM-DD HH:MM): ")
228. reservation_code = generate_reservation_code(customer_name, contact_number, table_id, reservation_date_time)
229. Try
230. Open 'data/reservations.txt' file for appending
231. Write f"{reservation_code},{customer_name},{contact_number},{number_of_pax},{table_id},{reservation_date_time}\n" to the file
232. Print f"Reservation made successfully. Reservation Code: {reservation_code}"
233. Call block_table_for_reservation(table_id, reservation_date_time)
234. Except FileNotFoundError
235. Print "Error: Reservation could not be made."
236. End Function

237. Function generate_reservation_code(customer_name, contact_number, table_id, reservation_date_time):
238. Base_str = f"{customer_name}{contact_number}{table_id}{reservation_date_time}"
239. Hash_object = hashlib.md5(Base_str.encode())
240. Reservation_code = Hash_object.hexdigest()[:6]
241. Return Reservation_code
242. End Function

243. Function retrieve_reservation_by_code():
244. Reservation_code = input("Enter the reservation code: ")
245. Found = False
246. Try
247. Open 'data/reservations.txt' file for reading
248. Loop through each line in the file
249. Split the line into parts: code, customer_name, contact_number, number_of_pax, table_id, reservation_date_time
250. If code equals Reservation_code
251. Print f"Reservation Found:\n- Customer Name: {customer_name}\n- Contact Number: {contact_number}\n- Number of Pax: {number_of_pax}\n- Table ID: {table_id}\n- Reservation Date and Time: {reservation_date_time}"
252. Set Found to True
253. Break
254. Except FileNotFoundError
255. Print "Reservations file not found. Please ensure the 'data/reservations.txt' file exists."
256. If not Found
257. Print "No reservation found for the provided code."
258. End Function

259. Function block_table_for_reservation(table_id, reservation_date_time):
260. updated = False
261. tables = []
262. Try
263. Open 'data/tables.txt' file for reading
264. Loop through each line in the file
265. Split the line into parts: id, pax, _
266. If id equals table_id
267. Append f"{id},{pax},reserved\n" to tables list
268. Set updated to True
269. Else
270. Append line to tables list
271. If updated
272. Open 'data/tables.txt' file for writing
273. Write tables list to the file
274. Else
275. Print "Table ID not found."
276. Except FileNotFoundError
277. Print "Tables file not found. Please ensure the 'data/tables.txt' file exists."
278. End Function

[bookmark: _Toc161610279]Waiter services Source Code And Explanation

[image: A computer screen shot of a program code

Description automatically generated]
[image: A computer screen with text

Description automatically generated]
display_orders():
Lastly, this function will be responsible for displaying all the orders that are previously received and are ready to be served. It opens the file "orders.txt" and reads the instructions from there. Then, it prints out the information about each order having the status "ready_to_serve".
generate_next_order_id():
This function returns the next ID value, to be used as the order ID, in "orders.txt" file when the current highest order ID reads that file. The cursor will return an ID of 1 if the file doesn't exist or is empty.
show_available_tables():
It checks files "tables.txt" for table availability and displays them. It produces the particular tables where its status is "up".

[image: A screenshot of a computer

Description automatically generated]
[image: A screen shot of a computer screen

Description automatically generated]
[image:]
is_valid_table(table_id):
This function serves the purpose of looking for the table ID in the tables data with the provided one. It performs a simple check from the "tables.txt" table, if the table ID is found then it returns True otherwise it returns False.
check_in_customer():
This operations include seating a guest to a customer. It prompts the user for the table ID, number of pax, waiter/waitress ID. Then it sets the table status to "occupied" if the table is free and it can contain the number pax's provided.

[image: A screen shot of a computer program

Description automatically generated]
[image: A computer screen shot of a program code

Description automatically generated]
read_menu_items(): This function reads menu items from a file named "menu.txt" and generates a list of item names that returns as a list. It is assumed that in each line in the file, represents the menu item.
read_menu_items_with_prices(): This function performs the task of reading menu items as well as their prices from the ‘menu.txt’ file and returns a tuple of the two, which is then stored in a dictionary with item names as keys and their respective prices as values.
take_order(table_id, customer_pax, waiter_id): Guests can place a reservation for a table as another function of this offer. It invites the user to initiate a new order for each customer the quantity of which should also be provided. It reviews the orders first and then records the orders by saving them in the orders.txt file along with details of that order.

[image: A screen shot of a computer program

Description automatically generated]
update_order_status(order_id, new_status):
This function determines the current status of the order number being looked for and returns the new status of the order as searched for. The program will be taken from the 'orders.txt' file, and status of the defined order will be updated and the updated orders will be written back to the file.
update_order_status_to_served():
This purpose has an order id as the user is prompted to input. This would invoke the update_order_status() function which will update the order status to "served".
check_out_customer():
This functionality is significant since it indicates a table as being required to be cleaned once the customer is done. It stipulates the user to insert the table ID to be cleared out and change the table status to free.

[image: A screen shot of a computer program

Description automatically generated]
[image: A black screen with text

Description automatically generated]
clean_table():
This function checks that a table has been properly wiped and considered as being clean. In here, entering the table ID helps the user to mark off the table as cleaned and modifies the status of the table accordingly.
update_table_status(table_id, new_status):
This function implements a status change to the individual table that belongs to a certain ID by replacing the status with the new one. It takes the tables from the "tables.txt" file, updates the specified table status, and writes back replaced tables to the file.
is_table_free(table_id):
This function fulfils the purpose of seeing if the specified table, with an id as the key, is busy or not. It reads from the alleys.txt file and returns a True value if the table is free, otherwise returns a False value.

[image: A computer screen shot of a program code

Description automatically generated]
[image: A screen shot of a computer program

Description automatically generated]

accept_reservation():
This function allows a user to make table reservation. It obliges a user to input details, such as a customer name, contact number, number of the person, and reservation date/time. Lastly, it generates the reservation code, records the reservation detail in the ```reservations.txt``` file and updates the table status to ```reserved```.
generate_reservation_code():
This function creates a reservation code for the entered customer details and time/date of booking. It generates an MD5 digest of the concatenated strings of these details where first 6 characters of the hexadecimal digest is the returned.
retrieve_reservation_by_code():
This function is an accessory that gets reservation information by its reference code. It reads from "reservations.txt", locates the reservation with the code specified, and prints out the reservation details if available.
block_table_for_reservation():
This means when a table is requested it updates to "booked" status. Its working is directed to the "tables.txt" file, it updates the status of the given table and writes back the updated tables to the "tables.txt" file.

[bookmark: _Toc161610280]The output of this code

Show available tables choice
This will print all the free tables in the tables.txt any occupied tables won’t be printed
[image: A screenshot of a computer

Description automatically generated]
Show ready-made orders choice
This will print all the orders that are ready to be served this allows the waiter to see what food is finished and ready to be served to the customer you can see that is the picture below
[image: A screenshot of a computer

Description automatically generated]

Check-in customers and receive orders choice
As you can see in the picture below when I wanted to check in customer I only got the available tables I chose one of the available tables now I choose “B5” This table has a capacity of 6 pax but I seated 2 in it then I served them took every one’s order then all this will be saved in a file called order.txt
[image: A screenshot of a computer

Description automatically generated]
Serve order to customer choice
now after the chef finishes from preparing the food and it is ready to be served, I serve the order to the customer by the order id like shown in the picture below, of course the order status in the orders file will be updated
[image: A screenshot of a computer

Description automatically generated]
Check out customer choice
I will check out the customer from the table by the table id like shown in the picture below and the table status will change the table needs cleaning
[image: A screenshot of a computer

Description automatically generated]
Clean table choice
This will also use the table id to clean the table and update it to free
[image: A screenshot of a computer

Description automatically generated]

Accept reservation choice
this will ask the customer to put his name, phone number, table he wants, date and time like shown in the picture below and he will get a code so when he comes to the restaurant he will give us the code and we will see if he is registered or not
[image:]

Show reservation choice
as I said with the reservation code I can see all the details from here like shown in the picture
[image: A black rectangle with white text

Description automatically generated]
Exit will just quit the system

[bookmark: _Toc161610281]The fourth file “chef services”
[bookmark: _Toc161610282]Chef services pseudo code

1. function display_orders()
2. print "Received Orders"
3. try
4. open 'data/orders.txt' as file
5. for each line in file
6. parts = split line by comma
7. if length of parts equals 7 and parts[0] is numeric and parts[3] is not 'served'
8. order_id, table_id, waiter_id, status, item_name, quantity, price = parts
9. print "Order ID", order_id, "Table ID", table_id, "Waiter ID", waiter_id, "Status", status, "Item", item_name, "Quantity", quantity, "Price", price
10. except FileNotFoundError
11. print "Orders file not found. Please ensure the 'data/orders.txt' file exists."
12. end function

13. function update_order_status()
14. order_id_to_update = input("Enter the order ID to update: ")
15. print "Preparing order. This will take 10 seconds..."
16. for remaining in range(10, 0, -1)
17. print remaining, "seconds remaining.", end='\r'
18. sleep for 1 second
19. print "Order is now ready to serve! "
20.
21. new_status = 'ready_to_serve' # Automatically set the new status after delay
22. updated = False
23. updated_orders = []
24.
25. try
26. open 'data/orders.txt' as file
27. for each line in file
28. parts = split line by comma
29. if parts[0] equals order_id_to_update
30. parts[3] = new_status # Update the status
31. updated_line = join parts with comma and append '\n'
32. add updated_line to updated_orders
33. updated = True
34. else
35. add line to updated_orders
36.
37. if updated
38. open 'data/orders.txt' for writing as file
39. write each line in updated_orders to file
40. print "Order", order_id_to_update, "updated to", new_status
41. else
42. print "Order ID", order_id_to_update, "not found."
43. except FileNotFoundError
44. print "Orders file not found. Please ensure the 'data/orders.txt' file exists."
45. end function

46. function cancel_order()
47. order_id = input("Enter the order ID to cancel/block: ")
48. reason = input("Enter reason for cancellation/blocking: ")
49. updated = False
50. orders = []
51.
52. try
53. open 'data/orders.txt' as file
54. for each line in file
55. parts = split line by comma
56. if length of parts is less than 6
57. print "Skipping line due to unexpected format:", line
58. continue # Skip lines that do not conform to the expected format
59. id, table_id, waiter_id, status, item, price = parts
60. if id equals order_id
61. add "{id},{table_id},{waiter_id},cancelled_due_to_{reason},{item},{price}\n" to orders
62. updated = True
63. else
64. add line to orders
65.
66. if updated
67. open 'data/orders.txt' for writing as file
68. write each line in orders to file
69. print "Order", order_id, "cancelled due to", reason
70. else
71. print "Order ID not found."
72. except FileNotFoundError
73. print "Orders file not found. Please ensure the 'data/orders.txt' file exists."
74. end function

75. function chef_interface()
76. while True
77. print "\n╔════════════════════════════════════╗"
78. print "║ Chef Interface ║"
79. print "╠════════════════════════════════════╣"
80. print "║ 1. Display Orders ║"
81. print "║────────────────────────────────────║"
82. print "║ 2. Update Order Status ║"
83. print "║────────────────────────────────────║"
84. print "║ 3. Cancel Order ║"
85. print "║────────────────────────────────────║"
86. print "║ 4. Exit ║"
87. print "╚════════════════════════════════════╝"
88.
89. choice = input("\nEnter your choice (1-4): ")
90.
91. if choice equals '1'
92. display_orders()
93. elif choice equals '2'
94. update_order_status()
95. elif choice equals '3'
96. cancel_order()
97. elif choice equals '4'
98. print "Exiting..."
99. break
100. else
101. print "Invalid choice, please try again."
102. end function

103. if __name__ equals "__main__"
104. chef_interface()
105. end if

[bookmark: _Toc161610283]Chef services Source Code And Explanation
[image: A computer screen shot of colorful text

Description automatically generated]
[image: A screen shot of a computer program

Description automatically generated]
display_orders():
This function fetches the data from the file named 'data/orders.txt', prints out the details of the order along with the ones that haven't been served yet. In order to ensure that the file has the correct information (order ID, table ID, waiter ID, status, item name, quantity and price), and the status of the order is not 'served', it runs through. If the file hasn't been located, it gives a message containing an error.
update_order_status():
This method serves to record an order status which is stored in the orders file. It further asks the user to enter the order ID and press 'Update' to place a new order. Finally, it goes into the phase to make an order, which takes a while, to get it ready. Then it automatically pulls the order states and sets it as 'ready_to_serve'. If the order ID was not found it will send the user a message of error. In case of the unavailability of the file, an error message is printed.

[image: A screenshot of a computer program

Description automatically generated]
[image: A screenshot of a computer

Description automatically generated]
cancel_order(): Therefore, this function permits to process cancellation or rejection of an order. It makes the user enter both order ID and the purpose of cancellation/blocking. It amends the status from ‘At risk of being cancelled’ to ‘Cancelled due to reason’ and validates the new order proceeding. If the order ID is not found, an error message is printed by its code. If file does not exist, an error is sent for the message.
chef_interface():a component is developed to link the system with the chef at the kitchen. It shows a list that contains actions such as Orders, Cancel orders, show status of order and exit from the interface. Following the specific input from the user, the function being called is decided. The process will keep on going till the exit option of the user is chosen.

[bookmark: _Toc161610284]The Output of the code
The chef’s menu is different because when the waiter takes the order it will directly go to the chef inter face like shown in the picture below so ones the order is received it will open the chef menu
[image: A screenshot of a computer

Description automatically generated]
Display menu choice
Now this will display all the menu item that is received
[image: A screenshot of a computer

Description automatically generated]

Update order status choice
With the order ID the food preparation will take 10 seconds to be cooked then it will be updated to ready to be served
[image: A screenshot of a computer

Description automatically generated]
Cancel order choice
This will cancel the order because maybe its out of stock

[bookmark: _Toc161610285]The fifth file “ casher”
[bookmark: _Toc161610286]Pseudo-code for cashier file

1. function log_transaction(amount, payment_method)
2. """Log each transaction to the transactions.txt file."""
3. try
4. open 'data/transactions.txt' as file
5. file.write f"{amount:.2f},{payment_method}\n"
6. except Exception as e
7. print f"Error logging transaction: {e}"
8. end function

9. function log_sale(item, quantity, amount)
10. """Log each item sold to the daily_sales.txt file with correct quantity and total amount."""
11. try
12. open 'data/daily_sales.txt' as file
13. file.write f"{item},{quantity},{amount * quantity}\n" # Ensure amount reflects total sale
14. except Exception as e
15. print f"Error logging sale: {e}"
16. end function

17. function read_order_details(order_id, takeaway)
18. """Fetch order details based on order ID."""
19. orders = []
20. total = 0
21. try
22. open 'data/orders.txt' as file
23. for each line in file
24. parts = split line by comma
25. # Ensure we're matching the order ID and expecting 7 parts per line
26. if parts[0] equals order_id and length of parts equals 7
27. _, _, _, _, item, quantity, price = parts
28. quantity = convert quantity to integer
29. price = convert price to float
30. total_price = quantity * price
31. add "{item} x {quantity}: {total_price:.2f}" to orders
32. total += total_price
33. except FileNotFoundError
34. print "Orders file not found. Please ensure the 'data/orders.txt' file exists."
35. # Adjust for takeaway charge
36. if takeaway
37. total += length of orders # Assuming RM1 for each item if takeaway
38. return orders, total
39. end function

40. function generate_cash_bill()
41. """Generate a bill for an order."""
42. order_id = input "Enter the order ID to generate bill: "
43. takeaway = input "Is this order takeaway? (yes/no): ".lower().startswith 'y'
44. orders, total = read_order_details(order_id, takeaway)
45.
46. if not orders
47. print "Order not found."
48. return
49.
50. service_charge = total * 0.10
51. gst = total * 0.06
52. final_total = total + service_charge + gst
53. if takeaway
54. takeaway_charge = length of orders # RM1 for each item if takeaway
55. final_total += takeaway_charge
56. print "\n--- Bill Summary ---"
57. print "\n".join(orders)
58. print "Subtotal:", total
59. if takeaway
60. print "Takeaway Packing Charge:", takeaway_charge
61. print "Service Charge (10%):", service_charge
62. print "Government Service Tax (6%):", gst
63. print "Total:", final_total
64.
65. payment_method = input "Enter payment method (cash, e-wallet, debit, credit card): "
66. log_transaction(final_total, payment_method)
67. # Log each sale
68. for each order_line in orders
69. item, price = split order_line by ': '
70. log_sale item, 1, convert price to float # Log the sale with quantity as 1 for simplicity
71. print f"Payment of {final_total:.2f} received via {payment_method}. Thank you!"
72. end function

73. function end_of_day_processing()
74. """Process transactions at the end of the day."""
75. print "End of Day Summary:"
76. total_cash = total_card = total_ewallet = 0.0
77. try
78. open 'data/transactions.txt' as file
79. for each line in file
80. amount, method = split line by comma
81. amount = convert amount to float
82. if method equals "cash"
83. total_cash += amount
84. elif method in ["debit", "credit card"]
85. total_card += amount
86. elif method equals "e-wallet"
87. total_ewallet += amount
88. except FileNotFoundError
89. print "Transactions file not found. No transactions for today."
90. return
91.
92. print "Total Cash Received:", total_cash
93. print "Total Card Payments:", total_card
94. print "Total E-Wallet Payments:", total_ewallet
95. end function

96. function daily_sales_analytics()
97. sales_data = {}
98. try
99. open 'data/daily_sales.txt' as file
100. for each line in file
101. parts = split line by comma
102. if length of parts equals 3 # Ensure the line has three parts
103. item, quantity, amount = parts[0], parts[1], parts[2]
104. if item in sales_data
105. sales_data[item]['quantity'] += convert quantity to integer
106. sales_data[item]['amount'] += convert amount to float
107. else
108. sales_data[item] = {'quantity': convert quantity to integer, 'amount': convert amount to float}
109. else
110. print f"Skipping line due to unexpected format: {line.strip()}"
111. except FileNotFoundError
112. print "Daily sales file not found. Please ensure the 'data/daily_sales.txt' file exists."
113. return
114.
115. if not sales_data
116. print "No sales data available for today."
117. return
118.
119. total_sales_amount = sum item['amount'] for item in sales_data.values()
120. total_sales_quantity = sum item['quantity'] for item in sales_data.values()
121.
122. top_selling_item = max sales_data.items() by key=lambda x: x[1]['quantity']
123. least_selling_item = min sales_data.items() by key=lambda x: x[1]['quantity']
124.
125. print "\n--- Daily Sales Analytics ---"
126. print "Total Sales Amount:", total_sales_amount
127. print "Total Number of Sales:", total_sales_quantity
128. print "Top Selling Food Item:", top_selling_item[0], "(Quantity Sold:", top_selling_item[1]['quantity'], ")"
129. print "Least Selling Food Item:", least_selling_item[0], "(Quantity Sold:", least_selling_item[1]['quantity'], ")"
130. end function

131. function cashier_interface()
132. while True
133. print "\n╔═══════════════════════════════════╗"
134. print "║ Cashier Interface ║"
135. print "╠═══════════════════════════════════╣"
136. print "║ 1. Generate Cash Bill ║"
137. print "║───────────────────────────────────║"
138. print "║ 2. End of Day Processing ║"
139. print "║───────────────────────────────────║"
140. print "║ 3. Daily Sales Analytics ║"
141. print "║───────────────────────────────────║"
142. print "║ 4. Exit ║"
143. print "╚═══════════════════════════════════╝"
144.
145. choice = input "Enter your choice (1-4): "
146.
147. if choice equals '1'
148. generate_cash_bill()
149. elif choice equals '2'
150. end_of_day_processing() # Implement this based on your system's needs
151. elif choice equals '3'
152. daily_sales_analytics() # Implement this based on your system's needs
153. elif choice equals '4'
154. print "Exiting..."
155. return
156. else
157. print "Invalid choice, please try again."
158. end function

159. if __name__ equals "__main__"
160. cashier_interface()
161. end if

[bookmark: _Toc161610287]Cashier Service Source Code And Explanation

[image: A screen shot of a computer program

Description automatically generated]
log_transaction():
The function does the log of every transaction to the file that is named transactions.txt Amount and payment_method are two parameters that are being used for the transaction (method of payment).
log_sale():
It retrieves the data such as the total amount, quantity from the file and then writes this info to the daily_sales.txt file. It has only three parameters defined as item (the name of the item), quantity (quantity sold), and amount (the price per item).
read_order_details():
This function retrieves the order details from the orders.txt simply by providing the order ID as an argument. It placed an ordered list of items plus totalling of price by priority. It has two parts, order_id(the ID of an order) and takeaway(a Boolean field for indicating whether the order is for takeaway or not).

[image: A screen shot of a computer program

Description automatically generated]
[image: A screen shot of a computer code

Description automatically generated]
generate_cash_bill():
With this function the bill is physicalized for an order. The script will ask for the order ID and whether the order was a takeaway or not. Following that, it works out the sub-total, service charge, GST, and the amount due. It marks the transaction activity and sales numbers too. In the end, it shows the bill summary page and gives the payment method as an option.
end_of_day_processing():
This function reconciles transactions that took place at the end of the trading day. It takes the transactions from the transactions.txt file and put those into 3 different types of modes: cash, card and electronic wallet. Finally, it writes a report of amount cash payment, amount card payment and amount e-wallet payment.

[image: A screen shot of a computer program

Description automatically generated]
[image: A screenshot of a computer

Description automatically generated]
daily_sales_analytics():
This process reports on the daily sales data as contained in the daily_sales.txt file. Through summing up the sales amount and number of sales, it shows the food item that sells the most and the one that sells the least. Finally, the summary statistics for the selected data points are given.
cashier_interface():
This function is an evidence of an interface between the cashier and different tasks. It displays this menu with options for generation of a cash bill, conduct an end-of-day processing, view daily sales reports or an exit. Based on the usage of certain function, it calls the function accordingly.
[bookmark: _Toc161610288]The Output of the code

Generate cash bill choice
This will ask the order id to generate the bill and it will also ask if the order is take away or no then he will choose how to pay then bill will be done successfully
[image: A black screen with white text

Description automatically generated]
This in the transactions.txt file
[image:]

End-of-day processing choice
This will show all the different payments we got
[image: A black rectangle with white text

Description automatically generated]

Daily sales analytics choice
From the file, daily sales will print all details like what’s the most selling food today as shown in the picture below
[image: A screenshot of a computer

Description automatically generated]

Exit choice will just exit the system

[bookmark: _Toc161610289]Conclusion:
The management system in a restaurant that is presented here is an all-inclusive solution which helps to simplify the restaurant's operations on various aspects such as the users' management, menu and table management, order process, and sales analysis. Based on a network of cooperative modules, the system facilitates seamless choreography of different functions complied by workers in a restaurant.
 Key Features: User Management: The addition creates/edit/delete user accounts of different roles i.e. boss, cook, cooker and waiter/waitress. User authentication serves sole purpose of secure access to the system. Menu and Table Management: Managers can add, edit, or delete menu items, and also may assign an occupied, free or etc. status to any given table. This ensures that the restaurant in question is advertised in a manner which displays exact meals and room capacity.
Order Handling: Waiters/waitresses can keep an eye on customers, take orders from customers, and serve them without delay. Orders are directed to the kitchen for their preparing and after preparing they are served to the table for their respective customers. The software is designed to be able to monitor the status of order to provide prompt service.
Cashier Operations: Cashiers may be able to create bills, deal with transactions, as well as perform end-of-day processing. Sales analysis on a daily basis gives the restaurant the opportunities to understand the performance of the restaurant itself including the rate of total, sales, the most popular food, and the patterns of generated income.
Benefits: Efficiency: The system improves efficiency by the functions of automation and real-time updates, and it thus eliminates high rates of manual error. Customer Satisfaction: Improved order execution speed as well as better service both contribute to higher customer satisfaction and loyalty. Data-driven Decision Making: Sales analytics help company managers to make smart money decisions on such issues as menu adjustment, pricing and resource allocation. Future Enhancements: Integration of online request platforms for a smooth order processing. Customer relation management strategy that involves employing loyalty programs and customer feedback channels to further engage with customers. Predictive analytics for demand prediction and inventory management is one of the key features.

[bookmark: _Toc161610290]Referencing
F. (2018, July 11). Learn Python - Full Course for Beginners [Tutorial]. YouTube. https://www.youtube.com/watch?v=rfscVS0vtbw
B. C. (2021, February 15). Python Full Course for free 🐍. YouTube. https://www.youtube.com/watch?v=XKHEtdqhLK8
P. W. M. (2018, November 6). Python Functions | Python Tutorial for Absolute Beginners #1. YouTube. https://www.youtube.com/watch?v=u-OmVr_fT4s
P. W. M. (2018, November 5). Python For Loops - Python Tutorial for Absolute Beginners. YouTube. https://www.youtube.com/watch?v=94UHCEmprCY
P. W. M. (2018, November 5). Python For Loops - Python Tutorial for Absolute Beginners. YouTube. https://www.youtube.com/watch?v=94UHCEmprCY

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image1.png

image2.png

