
SQL Operators

● =: Equal to (e.g., age = 25)
● != or <>: Not equal to (e.g., age != 25)
● >: Greater than (e.g., age > 25)
● >=: Greater than or equal to (e.g., age >= 25)
● <: Less than (e.g., age < 25)
● <=: Less than or equal to (e.g., age <= 25)
● AND: Combines multiple conditions (e.g., age > 20 AND city = 'Kuala Lumpur')
● OR: One of multiple conditions is true (e.g., age < 18 OR age > 65)
● BETWEEN: Range of values (e.g., age BETWEEN 20 AND 30)
● LIKE: Pattern matching (e.g., name LIKE 'A%')

○ %: Matches any sequence of characters.
○ _: Matches a single character.

● IN: Matches any value in a list (e.g., city IN ('KL', 'Penang', 'Johor'))
● DISTINCT: Selects unique values (e.g., SELECT DISTINCT city FROM customers)

Basic SQL Commands

1. SELECT
SELECT column1, column2, ...
FROM table_name
WHERE condition;

Example:

SELECT name, age
FROM users
WHERE age >= 18;

2. INSERT

INSERT INTO table_name (column1, column2, ...)
VALUES (value1, value2, ...);

Example:

INSERT INTO users (name, age, city)
VALUES ('John Doe', 25, 'KL');



3. UPDATE
UPDATE table_name
SET column1 = value1, column2 = value2, ...
WHERE condition;

Example:

UPDATE users
SET city = 'Penang'
WHERE name = 'John Doe';

4. DELETE
DELETE FROM table_name
WHERE condition;

Example:

DELETE FROM users
WHERE age < 18;

5. CREATE TABLE
CREATE TABLE table_name (

column1 datatype,
column2 datatype,
...

);

Example:

CREATE TABLE users (
id INT PRIMARY KEY,
name VARCHAR(50),
age INT,
city VARCHAR(50)

);



6. DROP TABLE

DROP TABLE table_name;

Example:

DROP TABLE users;

SQL Joins

1. INNER JOIN

Returns records that have matching values in both tables.

SELECT columns
FROM table1
INNER JOIN table2
ON table1.column = table2.column;

2. LEFT JOIN (LEFT OUTER JOIN)

Returns all records from the left table and matched records from the right table.

SELECT columns
FROM table1
LEFT JOIN table2
ON table1.column = table2.column;

3. RIGHT JOIN (RIGHT OUTER JOIN)

Returns all records from the right table and matched records from the left table.

SELECT columns
FROM table1
RIGHT JOIN table2
ON table1.column = table2.column;



4. FULL OUTER JOIN

Returns all records when there is a match in either left or right table.

SELECT columns
FROM table1
FULL OUTER JOIN table2
ON table1.column = table2.column;

Grouping, Filtering, and Sorting

1. GROUP BY

Groups rows that have the same values into summary rows.

SELECT column1, COUNT(*)
FROM table_name
GROUP BY column1;

Example:

SELECT city, COUNT(*)
FROM users
GROUP BY city;

2. HAVING

Filters groups based on a condition (used after GROUP BY).

SELECT column1, COUNT(*)
FROM table_name
GROUP BY column1
HAVING COUNT(*) > 1;

3. WHERE

Filters rows before grouping or aggregation.

SELECT column1, column2
FROM table_name
WHERE condition;



4. ORDER BY

Sorts the result set by one or more columns.

SELECT columns
FROM table_name
ORDER BY column1 ASC|DESC;

Example:

SELECT name, age
FROM users
ORDER BY age DESC;

Aggregate Functions

1. AVG (Average)

Calculates the average value.

SELECT AVG(column_name)
FROM table_name;

Example:

SELECT AVG(age)
FROM users;

2. SUM (Sum)

Calculates the total sum of a numeric column.

SELECT SUM(column_name)
FROM table_name;

Example:

SELECT SUM(salary)
FROM employees;



3. COUNT

Counts the number of rows.

SELECT COUNT(column_name)
FROM table_name;

Example:

SELECT COUNT(*)
FROM users;

4. MIN (Minimum)

Finds the smallest value.

SELECT MIN(column_name)
FROM table_name;

Example:

SELECT MIN(salary)
FROM employees;

5. MAX (Maximum)

Finds the largest value.

SELECT MAX(column_name)
FROM table_name;

Example:

SELECT MAX(age)
FROM users;


