Table of Contents

Chapter 1: Introduction	2
Chapter 2: File System	3
Chapter 3: Data Models	6
Chapter 4: Relational Databases	9
Chapter 5: Entity Relationship Model	16
Chapter 6: Normalization	24
Chapter 7: SQL	30
Chapter 8: Extended Entity Relationship Model	36
Chapter 9: Database Dev Life Cycles	41

Chapter 1: Introduction

Data: Raw facts, building blocks of information. Unprocessed Information.

Information: Data processed to reveal meaning.

Database—shared, integrated computer structure that stores:

- End user data (raw facts)
- Metadata (data about data)

DBMS (database management system):

- Collection of programs that manages database structure and controls access to data
- Possible to share data among multiple applications or users
- Makes data management more efficient and effective

Advantages of DBMS:

- End users have better access to more and better managed data.
- Promotes integrated view of organization's operations.
- The probability of data inconsistency is greatly reduced.
- Possible to produce quick answers to ad hoc queries.

Types of Databases:

Single user: Supports only one user at a time

Desktop: Single-user database running on a personal computer

Multi-user: Supports multiple users at the same time

Workgroup: Multi-user database that supports a small group of users or a single department

Enterprise: Multi-user database that supports a large group of users or an entire organization

Can be classified by location:

Centralized: Supports data located at a single site

Distributed: Supports data distributed across several sites

Can be classified by use:

Transactional (or production): Supports a company's day-to-day operations

Data warehouse: Stores data used to generate information required to make tactical or strategic decisions

Often used to store historical data

Structure is quite different

QUESTIONS FOR TOPIC 1:

What is the difference between data and information: Data is raw, unprocessed information. Whereas information is processed information that has meaning to it.

Describe the difference between database and DBMS: Database is shared, integrated computer structure that stores end user data and metadata. While DBMS is a collection of programs that manages database structure and controls access to data

Briefly explain 3 types of databases:

- Single user: Supports only one user at a time
- Desktop: Single-user database running on a personal computer
- Multi-user: Supports multiple users at the same time

Chapter 2: File System Why is database design important?

It defines the database's expected use; it also highlights different approaches needed for different types of databases. It helps avoid redundant data, which can lead to bad decision and organization failures.

File Systems:

Managing data with file systems is obsolete!

Manual File systems:

- Collection of file folders kept in file cabinet.
- Organization within folders based on data's expected use (ideally logically related)
- System adequate for small amounts of data with few reporting requirements (DISADVANTAGE)
- Finding and using data in growing collections of file folders became time-consuming and cumbersome. (DISADVANTAGE)

Conversion from manual to computer system:

- Could be technically complex, requiring hiring of data processing (DP) specialists.
- Resulted in numerous "home-grown" systems being created.

Initially, computer files were similar in design to manual files.

Field: A character or group of characters (alphabetical or numerical) that has a specific meaning. A field is used to define and store data.

Record: A logically connected set of one or more fields that describes a person, place, or thing. File: A collection of related Records.

Disadvantages of File Systems:

- Time-consuming, high-level activity.
- As the number of files expands, system administration becomes difficult.
- Making changes in existing file structure is difficult.
- File structure changes require modifications in all programs that use data in that file.
- Modifications are likely to produce errors, requiring additional time to "debug" the program.
- Security features are hard to program and therefore often omitted.

Data redundancy results in data inconsistency, where different and conflicting versions of the same data appear in different places. Errors more likely to occur when complex entries are made in several different files and/or recur frequently in one or more files.

Types of data anomalies:

Update anomalies: Occur when changes must be made to existing records.

Insertion anomalies: Occur when entering new records.

Deletion anomalies: Occur when deleting records.

Problems inherent in file systems make using a database system desirable:

File system

Many separate and unrelated files.

Database

Logically related data stored in a single logical data repository.

Database system is composed of five main parts:

- Hardware
- Software
- Operating system software
- DBMS software
- Application programs and utility software
- People
- Procedures
- Data

DBMS performs functions that guarantee integrity and consistency of data:

- Data dictionary management: Defines data elements and their relationships.
- Data storage management: Stores data and related data entry forms, report definitions, etc.
- Data transformation and presentation: Translates logical requests into commands to physically locate and retrieve the requested data.
- Security management: Enforces user security and data privacy within database.
- **Multiuser access control:** Uses sophisticated algorithms to ensure multiple users can access the database concurrently without compromising the integrity of the database.
- Backup and recovery management: Provides backup and data recovery procedures.
- Data integrity management: Promotes and enforces integrity rules.
- Database access languages and application programming interfaces: Provide data access through a query language.
- Database communication interfaces: Allow database to accept end-user requests via multiple, different network environments.

Questions for Topic 2:

What are the disadvantages of file-based system:

a) Time-consuming, high-level activity.

b) As the number of files expands, system administration becomes difficult.

c) Making changes in existing file structure is difficult.

What is data redundancy?

Where different and conflicting versions of the same data appear in different places. Errors more likely to occur when complex entries are made in several different files and/or recur frequently in one or more files.

Explain different types of data anomaly:

Update anomalies: Occur when changes must be made to existing records.

Insertion anomalies: Occur when entering new records. Deletion anomalies: Occur when deleting records.

Describe 3 functions of DBMS:

Data dictionary management: Defines data elements and their relationships.
 Data storage management: Stores data and related data entry forms, report definitions, etc.
 Security management: Enforces user security and data privacy within database.

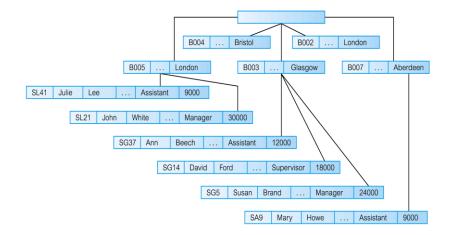
Chapter 3: Data Models Data models:

Relatively simple representations, usually graphical, of complex real-world data structures.

Facilitate interaction among the designer, the applications programmer, and the end user.

End-users have different views and needs for data.

Data model organizes data for various users.


Data model building blocks:

- Entity anything about which data are to be collected and stored.
- Attribute a characteristic of an entity
- Relationship describes an association among entities.
 - One-to-many (1:M) relationship
 - Many-to-many (M:N or M:M) relationship
 - One-to-one (1:1) relationship
 - Relationships are bi-directional
- Constraint a restriction placed on the data.
- Business rules: Brief, precise, and unambiguous. Apply to any organization that stores and uses data to generate information. Must be rendered in writing and must be kept up to date. Describe characteristics of the data as viewed by the company. Sometimes are external to the organization.

Sources of Business Rules:

- Company managers
- Policy makers
- Department managers
- Written documentation
 - Procedures
 - Standards
 - Operations manuals
- Direct interviews with end users

Hierarchical Data Model:

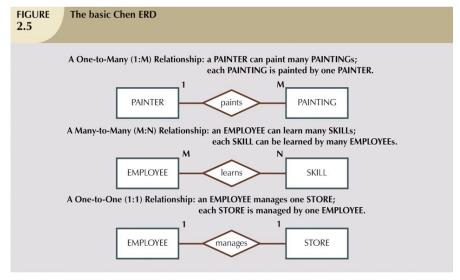
Network Model:

B005	22 Deer Rd	London	<u> </u>	SL41	Jul e	Lee	 Assistant	9000
			\backslash					
B007	16 Argyl St	Aberdeen	$\langle \rangle$	SL21	John	White	 Manager	30000
B003	163 Main St	Glasgow		SA9	Mary	Howe	 Assistant	9000
			\mathbb{N}					
B004	32 Manse Rd	Bristol	$\langle \rangle$	SG37	Ann	Beech	 Assistant	12000
B002	56 Clover Dr	London	\'	SG14	David	Ford	 Supervisor	18000
			_ \					
			`	SG5	Susan	Brand	 Manager	24000

Relational Model:

Relational Table: Stores a collection of related entities where it resembles a file.

Relational table is purely logical structure: How data are physically stored in the database is of no concern to the user or the designer. This property became the source of a real database revolution.


Entity Relationship Diagram (ERD)

Introduced by Chen in 1976

- Entity relationship diagram (ERD)
 - Uses graphic representations to model database components
 - Entity is mapped to a relational table
- Entity instance (or occurrence) is row in table.
- Entity set is collection of like entities.
- Connectivity label types of relationships

Diamond connected to related entities through a relationship line

CROW'S ERD

FIGURE The basic Crow's foot ERD 2.6
A One-to-Many (1:M) Relationship: a PAINTER can paint many PAINTINGs; each PAINTING is painted by one PAINTER.
A Many-to-Many (M:N) Relationship: an EMPLOYEE can learn many SKILLs; each SKILL can be learned by many EMPLOYEEs.
A One-to-One (1:1) Relationship: an EMPLOYEE manages one STORE; each STORE is managed by one EMPLOYEE.
EMPLOYEE -I+ - manages - +I- I

Questions for Topic 3:

What is data model?

Relatively simple representations, usually graphical, of complex real-world data structures.

Facilitate interaction among the designer, the applications programmer, and the end user.

What is the source of business rules?

- Company managers
- Policy makers
- Department managers
- Written documentation
- Direct interviews with end users

What is entity relationship model?

Entity relationship diagram (ERD) is a data model which uses graphic representations to model database components. Entity is mapped to a relational table.

Chapter 4: Relational Databases

Relational model

Enables programmers to view data logically rather than physically.

- Table
 - Has advantages of structural and data independence?
 - Resembles a file from conceptual point of view.
 - Easier to understand than its hierarchical and network database predecessors.
 - Each table row is called a Tuple.
 - Each column represents and attributes.
 - Each row and column represent a single data value.
 - Each column has a specific range of values known as the attribute domain.

Table: two-dimensional structure composed of rows and columns

- Contains group of related entities = an entity set
- Terms entity set and table are often used interchangeably.

Table also called a relation because the **relational model's creator, Codd**, used the term relation as a synonym for table

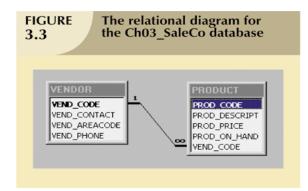
Think of a table as a persistent relation: A relation whose contents can be permanently saved for future use.

Keys: Consists of one or more attributes that determine other attributes.

- Primary key (PK) is an attribute (or a combination of attributes) that uniquely identifies any given entity (row)
- Key's role is based on determination.
 - If you know the value of attribute A, you can look up (determine) the value of attribute B.
- Foreign key (FK)
 - An attribute whose values match primary key values in the related table.
- Referential integrity
 - FK contains a value that refers to an existing valid tuple (row) in another relation.
- Secondary key
 - Key used strictly for data retrieval purposes.
- Candidate key
 - A Candidate Key can be any column or a combination of columns that can qualify as unique key in database.
 - There can be multiple Candidate Keys in one table.
 - Each Candidate Key can qualify as Primary Key.

How to select a Primary Key:

- Select a key that does not contain NULL
- Select a key that is unique and does not repeat
- Make sure that Primary Key does not keep changing


Nulls: No data entry, not permitted in primary key, should be avoided in other attributes.

- Can represent
 - An unknown attribute value
 - A known, but missing, attribute value
 - A "not applicable" condition
- Can create problems when functions such as COUNT, AVERAGE, and SUM are used
- Can create logical problems when relational tables are linked

Controlled redundancy:

- Makes the relational database work.
- Tables within the database share common attributes that enable the tables to be linked together.

FIGURE 3.2	An	example of	f a simpl	e re	lational da	ntabase				
	Prim	e name: PRO Iary key: PRO ign key: VENI	D_CODE			Database	name: Ch03	SaleCo		
		PROD_CODE	PRO	D_DE	SCRIPT	PROD_PRICE	PROD_ON_H	IAND VEND	CODE	
	• D01278-AB Claw ham					\$12.95		23	232	
				hain s	aw, 16-in. bar	\$189.99		4	235	
				nmer, 16-lb. head		\$18.63		6	231	
						\$2.99	\$2.99 15		232	
		± ZZX/3245Q	Steel tape,	12-ft.	length	\$6.79 8		8	235	
							link			
					VEND_COD			D_AREACO	E VEND_PHONE	
		e name: VEN		-		30 Shelly K. Sr			555-1234	
		ary key: VEN				31 James John			123-4536	
	Foreign key: none					32 Annelise Cr			224-2134	
						33 Candice Wa			342-6567	
						34 Arthur Jone			123-3324	
					+ 2	35 Henry Orto:	zo 615		899-3425	

Data dictionary

- Provides detailed accounting of all tables found within the user/designer-created database
- Contains (at least) all the attribute names and characteristics for each table in the system
- Contains metadata—data about data

Sometimes described as "the database designer's database" because it records the design decisions about tables and their structures

CUSTOMER	CUS_CODE CUS_LNAME CUS_FNAME CUS_INITIAL CUS_RENEW_DATE AGENT_CODE	Customer account code Customer last name Customer first name Customer initial Customer insurance renewal date Agent code	CHAR(5) VCCHAR(20) VCHAR(20 CHAR(1) DATE CHAR(3)	99999 Xxxxxxxx Xxxxxxxx X dd-mmm-yyyy 999	10000-99999	Y Y Y	PK FK	AGENT
AGENT	AGENT_CODE AGENT_AREACODE AGENT_PHONE AGENT_LNAME AGENT_YTD_SLS	Agent code Agent area code Agent telephone number Agent last name Agent year-to-date sales	CHAR(3) CHAR(3) CHAR(8) VCHAR(20) NUMBER(9,2)	999 999 999-9999 Xxxxxxx 9,999,999.99	0.00- 9,999,999.99	Y Y Y Y	РК	
FK PK CHAR VARCHAR NUMBER	Variable characterNumeric data (NU	ngth data (1—255 charactt length data (1—2,000 cha MBER(9,2) is used to speci a MONEY or CURRENCY	aracters) fy numbers with tw	o decimal places and	d up to nine digits, ir	icluding the deci	imal plac	es. Some RDBM

Relationships within the Relational Database

1:M relationship

٠

- Relational modeling ideal
- Should be the norm in any relational database design.

1:1 relationship

• Should be rare in any relational database design.

M:N relationships

- Cannot be implemented as such in the relational model.
- M:N relationships can be changed into two 1:M relationships

1:M relationship:

- Relational database norm
- Found in any database environment.

	FIGUR 3.18	E T P	he 1:M rel AINTER an	ationshi d PAIN1	ip betwe FING	en
	PA		paints	-+	PAINTING	
				DAINITED		
FIGURE 3.19	The imple	mented 1:M	I relationship betwe	en paintek a	na PAINTING	
	Tab Prin	emented 1:M le name: PAINT nary key: PAINT eign key: none	ER		:: Ch03_Museum	-
	Tab Prin	le name: PAINT nary key: PAINT eign key: none	ER		:: Ch03_Museum	
	Tab Prin	le name: PAINT nary key: PAINT eign key: none	er fer_num	Database name		
	Tab Prin	le name: PAINT nary key: PAINT eign key: none	er_num Painter_iname	Database name	:: Ch03_Museum	

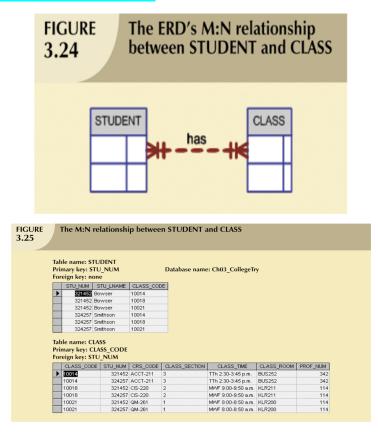
Data redundancy leads to data anomalies.

• Such anomalies can destroy the effectiveness of the database.

Foreign keys

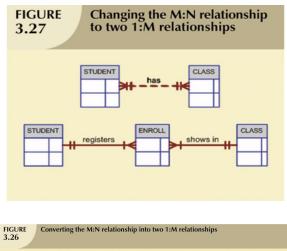
- Control data redundancies by using common attributes shared by tables.
- Crucial to exercising data redundancy control.

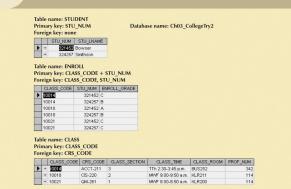
Sometimes, data redundancy is necessary.


1:1 relationship:

- One entity can be related to only one other entity, and vice versa.
- Sometimes means that entity components were not defined properly.
- Could indicate that two entities belong to the same table.
- As rare as a 1:1 relationship should be, certain conditions absolutely require their use.

ROI	FES	SOR	H (chairs	-11-	DEPART	MENT
Th	e impl	emented	1:1 relatio	nship betwee	n PROF	ESSOR and D	EPARTMENT
rima	ry key: I	ROFESSOR	:	-	Datab	base name: Ch03 _.	_TinyCollege
				PROF_EXTENSION	PROF	HIGH DEGREE	
•	103		DRE 156	6783	Ph.D.	and a second second	
	104	ENG	DRE 102	5561	MA		
		ACCT	KLR 229D	8665	Ph.D.		
		MKTMGT	KLR 126	3899	Ph.D.		
	110		AAK 160	3412	Ph.D.		
		ACCT	KLR 211	4436	Ph.D.		
	155	MATH	AAK 201 DRE 102	4440 2248	Ph.D. Ph.D.		
	160		KLR 203E	2359	Ph.D.		
		MKTMGT	KLR 409B	4016	DBA		
		PSYCH	AAK 297	3550	Ph.D.		
	209		KLR 333	3421	Ph.D.		
	228	CIS MATH	KLR 300 AAK 194	3000	Ph.D. Ph.D.		
		ECONIFIN	AAR 194 KLR 284	2851	Ph.D.		
		ACCT	KLR 244	4683	Ph.D.		
	335	ENG	DRE 208	2000	Ph.D.		
	342		BBG 208	5514	Ph.D.		
	387	BIOL	AAK 230	8665 6783	Ph.D. MA		
		ECONIFIN	DRE 156 KLR 284	6783 2851	MA		
	435		BBG 185	2031	Ph.D.		
					E foreign The is in	OR relationship is key in the PROFE 1:1 PROFESSOR d nplemented throu 2_NUM foreign ke	SSOR table. nairs DEPARTMEN igh the placemen
rima	ry key: I	DEPARTMEN					
rima oreig	ry key: I n key: E	DEPT_COD MP_NUM	E				
rima oreig	ry key: I n key: E DEPT_CO	DEPT_COD MP_NUM DDE DE	E PT_NAME		EMP_NUM	DEPT_ADDRESS	
rima oreig	ry key: I n key: E DEPT_CO	DEPT_COD MP_NUM DDE DE Account	E PT_NAME	BUS	EMP_NUM 114	KLR 211, Box 52	DEPT_EXTENSION
Prima Foreig	ry key: I n key: E DEPT_CO ACCI ART	DEPT_COD MP_NUM DDE DE Account Fine Arts	E PT_NAME	BUS A&SCI	EMP_NUM 114 435	KLR 211, Box 52 BBG 185, Box 128	3119 2278
Prima foreig	ry key: I n key: E DEPT_CO ART BIOL	DEPT_COD MP_NUM DDE DE Account Fine Arts Biology	E PT_NAME Ing	BUS A&SCI A&SCI	EMP_NUM 114 435 387	KLR 211, Box 52 BBG 185, Box 128 AAK 230, Box 415	3119 2278 4117
Prima oreig	ry key: I n key: E DEPT_OX ACCT ART BIOL CIS	DEPT_COD MP_NUM DDE DE Account Fine Arts Biology Compute	E PT_NAME	BUS A&SCI A&SCI	EMP_NUM 114 435 387 209	KLR 211, Box 52 BBG 185, Box 128	3119 2278 4117
Prima Foreig	ry key: I n key: E DEPT_OC ART BIOL CIS ECON/FIN ENG	DEPT_COD MP_NUM DDE DE Account Fine Art: Biology Compute I Economi English	E PT_NAME ng : r Info. Systems	BUS A&SCI A&SCI BUS	EMP_NUM 114 435 387 209 299 160	KLR 211, Box 52 BBG 185, Box 128 AAK 230, Box 415 KLR 333, Box 56 KLR 284, Box 63 DRE 102, Box 223	3119 2278 4117 3245 3126 1004
Prima oreig → + + + + + + + + + + + + +	ry key: I on key: E DEPT_CO ART BIOL CIS ECON/FIN ENG HIST	DEPT_COD MP_NUM DDE DE Account Fine Arts Biology Compute I Economi English History	PT_NAME ng r Info. Systems cs./Finance	BUS A&SCI A&SCI BUS BUS A&SCI A&SCI	EMP_NUM 114 435 387 209 299 160 103	KLR 211, Box 52 BBG 185, Box 128 AAK 230, Box 415 KLR 333, Box 56 KLR 284, Box 63 DRE 102, Box 223 DRE 156, Box 284	3119 2278 4117 3245 3126 1004 1867
Prima oreig	ry key: I pept_co ART BIOL CIS ECONFIN ENG HIST MATH	DEPT_COD MP_NUM DDE DE Account Fine Arts Biology Compute I Economi English History Mathema	E PT_NAME ng r Info. Systems cs/Finance tics	BUS A&SCI A&SCI BUS BUS A&SCI A&SCI A&SCI A&SCI A&SCI	EMP_NUM 114 435 387 209 299 160 103 297	KLR 211, Box 52 BBG 185, Box 128 AAK 230, Box 415 KLR 333, Box 56 KLR 284, Box 63 DRE 102, Box 223 DRE 156, Box 224 AAK 194, Box 422	3119 2278 4117 3245 3126 1004 1867 4234
rima oreig + <p< td=""><td>ry key: I n key: E DEPT_CC SCC ART BIOL CIS ECONJFIN ENG HIST MATH MKT/MG1</td><td>DEPT_COD MP_NUM DDE DE Account Fine Arts Biology Compute I Economi English History Mathema</td><td>E PT_NAME rg r Info. Systems cs/Finance tics sManagement</td><td>BUS A&SCI A&SCI BUS BUS A&SCI A&SCI BUS</td><td>EMP_NUM 114 435 387 209 299 160 103 297 106</td><td>KLR 211, Box 52 BBG 185, Box 128 AAK 230, Box 415 KLR 333, Box 58 KLR 284, Box 63 DRE 102, Box 223 DRE 156, Box 284 AAK 194, Box 422 KLR 126, Box 55</td><td>3119 2278 4117 3245 3126 1004 1867 4234 3342</td></p<>	ry key: I n key: E DEPT_CC SCC ART BIOL CIS ECONJFIN ENG HIST MATH MKT/MG1	DEPT_COD MP_NUM DDE DE Account Fine Arts Biology Compute I Economi English History Mathema	E PT_NAME rg r Info. Systems cs/Finance tics sManagement	BUS A&SCI A&SCI BUS BUS A&SCI A&SCI BUS	EMP_NUM 114 435 387 209 299 160 103 297 106	KLR 211, Box 52 BBG 185, Box 128 AAK 230, Box 415 KLR 333, Box 58 KLR 284, Box 63 DRE 102, Box 223 DRE 156, Box 284 AAK 194, Box 422 KLR 126, Box 55	3119 2278 4117 3245 3126 1004 1867 4234 3342
rima oreig + + + + + + + + + + + + + + + + + + +	ry key: I pept_co ART BIOL CIS ECONFIN ENG HIST MATH	DEPT_COD MP_NUM DDE DE Account Fine Arts Biology Compute I Economi English History Mathema	E PT_NAME ng ir Info. Systems cs/Finance tics sMionagement gy	BUS A&SCI A&SCI BUS BUS A&SCI A&SCI A&SCI A&SCI A&SCI	EMP_NLM 114 435 387 209 299 160 103 297 106 195	KLR 211, Box 52 BBG 185, Box 128 AAK 230, Box 415 KLR 333, Box 56 KLR 284, Box 63 DRE 102, Box 223 DRE 156, Box 224 AAK 194, Box 422	3119 2278 4117 3245 3126 1004 1867 4234


1:M relationship:


- Relational database norm.
- Found in any database environment.

Converting M:M to 1:M

- Can be implemented by breaking it up to produce a set of 1:M relationships
- Can avoid problems inherent to M:N relationship by creating a composite entity or bridge entity
- Implementation of a composite entity
- Yields required M:N to 1:M conversion
- Composite entity table must contain at least the primary keys of original tables
- Linking table contains multiple occurrences of the foreign key values
- Additional attributes may be assigned as needed

Chapter 4 Questions:

• What is a candidate key?

A Candidate Key can be any column or a combination of columns that can qualify as unique key in database.

• What is a primary key?

Primary key (PK) is an attribute (or a combination of attributes) that uniquely identifies any given entity (row)

• What are the criteria for selecting primary key?

If you know the value of attribute A, you can look up (determine) the value of attribute B.

• What is a foreign key?

An attribute whose values match primary key values in the related table.

• What is attribute domain?

Each column has a specific range of values known as the attribute domain.

• What is entity integrity?

Entity integrity is concerned with ensuring that each row of a table has a unique and non-null primary key value

• What is referential integrity?

FK contains a value that refers to an existing valid tuple (row) in another relation.

• Why is NULL not favorable when inserting data values?

No data entry, not permitted in primary key

- Can represent
 - An unknown attribute value
 - A known, but missing, attribute value
 - A "not applicable" condition

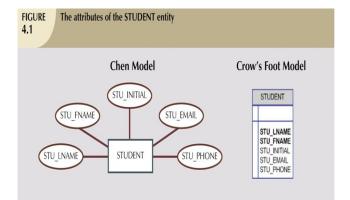
Can create problems when functions such as COUNT, AVERAGE, and SUM are used

- Provide 1 example each for the type of relationship below:
 - 1:1: each student has only one student ID, and each student ID is assigned to only one person.
 - 1:M: For example, each customer can have many sales orders.
 - M:N: example of a many-to many relationship is one between students and classes. A student can register for many classes, and a class can include many students.
- Explain how to resolve M:N relationship using the example above:

By turning the M:N to two 1:N relationships. o resolve a many-to-many relationship between students and classes, create an additional table called Enrollment with columns EnrollmentID, StudentID, and ClassID.

Chapter 5: Entity Relationship Model

ER model forms the basis of an ER diagram


- ERD represents conceptual database as viewed by end user
- ERDs depict database's main components:
 - Entities
 - Attributes
 - Relationships

Entities:

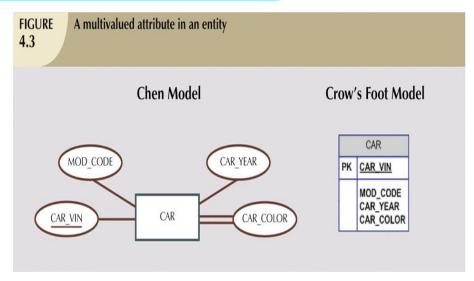
- Refers to entity set and not to single entity occurrence.
- Corresponds to table and not to row in relational environment.
- In both Chen and Crow's Foot models, entity is represented by rectangle containing entity's name.
- Entity name, a noun, is usually written in capital letters.

Attributes:

- Characteristics of entities
- In Chen model, attributes are represented by ovals and are connected to entity rectangle with a line.
- Each oval contains the name of attribute it represents.
- In Crow's Foot model, attributes are written in attribute box below entity rectangle.

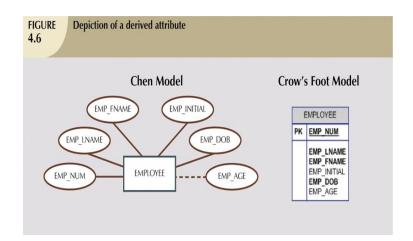
Domains:

- Attributes have domain.
 - Domain is attribute's set of possible values.
- Attributes may share a domain.


IDENTIFIES FOR PRIMARY KEYS: Underlined in the ERD

Composite Primary Keys:

• Primary keys ideally composed of only single attribute.


Possible to use a composite key.

- Primary key composed of more than one attribute.
- Composite attribute can be subdivided.
- Simple attribute cannot be subdivided.
- Single-value attribute can have only a single value.
- Multivalued attributes can have many values

Derived Attributes:

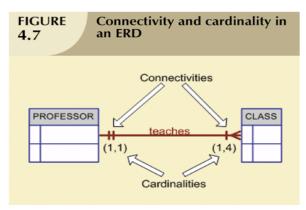
- Attribute whose value may be calculated (derived) from other attributes.
- Need not be physically stored within database.
- Can be derived by using an algorithm.

TABLEAdva4.2	intages and Disadvantages of Storing De	rived Attributes					
	DERIVED ATTRIBUTE						
	STORED	NOT STORED					
Advantage	Saves CPU processing cycles	Saves storage space					
	Data value is readily available	Computation always yields current value					
	Can be used to keep track of historical data						
Disadvantage	Requires constant maintenance to ensure	Uses CPU processing cycles					
	derived value is current, especially if any values	Adds coding complexity to queries					
	used in the calculation change						

Relationships:

- Association between entities
- Participants are entities that participate in a relationship.
- Relationships between entities always operate in both directions.
- Relationship can be classified as 1:M
- Relationship classification is difficult to establish if know only one side of the relationship.

Connectivity and Cardinality:


Connectivity

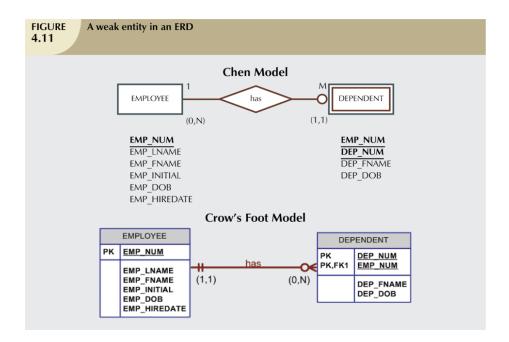
Used to describe the relationship classification.

Cardinality

 Expresses minimum and maximum number of entity occurrences associated with one occurrence of related entity.

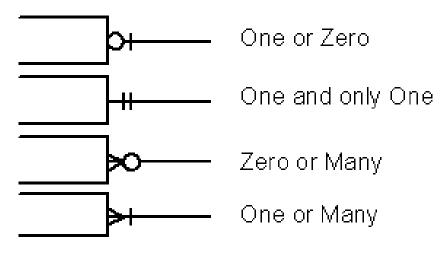
• Established by very concise statements known as business rules.

Weak Entities:


• Weak entity meets two conditions

Existence-dependent

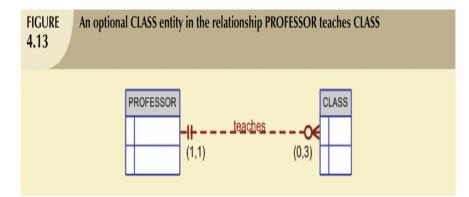
Cannot exist without entity with which it has a relationship.


Has primary key that is partially or totally derived from parent entity in relationship?

 Database designer usually determines whether an entity can be described as weak based on business rules.

Crow's Foot Notations for ERD (IMPORTANT)

Summary of Crow's Foot Notation



Relationship Participation:

• Optional participation

- One entity occurrence does not require corresponding entity occurrence in particular relationship.
- Mandatory participation
 - One entity occurrence requires corresponding entity occurrence in particular relationship.

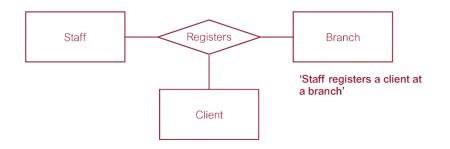
This is how you draw a Optional ERD:

Crow's Foot Symbols (IMPORTANT)

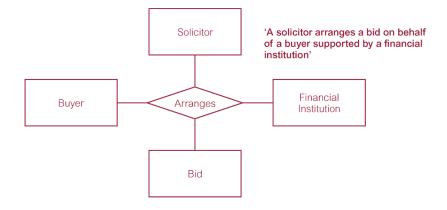
TABLE 4.3 Crow's Foot Symbols								
CROW'S FOOT SYMBOL	CARDINALITY	COMMENT						
O€	(0,N)	Zero or many. Many side is optional.						
I€	(1,N)	One or many. Many side is mandatory.						
H	(1,1)	One and only one. 1 side is mandatory.						
0	(0,1)	Zero or one. 1 side is optional.						

Relationship Degree:

- Indicates number of entities or participants associated with a relationship
- Unary relationship
 - Association is maintained within single entity .
- Binary relationship
 - Two entities are associated.
- Ternary relationship
 - Three entities are associated.
- Quaternary relationship


Four entities are associated.

Example of Binary Relationship is POwns:


'Private owner owns property for rent'

Example of Ternary Relationship called *Registers:*

Example of Quaternary Relationship called Arranges:

Recursive Relationships:

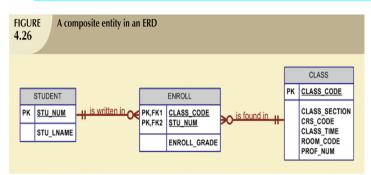

- Relationship can exist between occurrences of the same entity set
- Naturally found within unary relationship

FIGURE 4.18	An ER representa	tion of recursive relationships
	ģ	

IG .1	elationship ried to									
Database name: CH04_PartCo Table name: EMPLOYEE_V1										
Tał	ole name: I	EMPLOYEE_V	/1							
Tak	DIE name: I	EMPLOYEE_V	V1 EMP_FNAME	EMP_SPOUSE						
Tab	EMP_NUM			EMP_SPOUSE 347						
Tat	EMP_NUM	EMP_LNAME	EMP_FNAME							
Tab	EMP_NUM 345 346	EMP_LNAME Ramirez	EMP_FNAME James	347						
Tab	EMP_NUM 345 346 347	EMP_LNAME Ramirez Jones	EMP_FNAME James Anne	347						

Composite Entities:

- Also known as bridge entities
- Composed of primary keys of each of the entities to be connected
- May also contain additional attributes that play no role in connective process

Chapter 5 Questions:

- Provide 1 example each for the relationship degree below.
 - Unary / recursive

Example: Employee and Manager Relationship

Explanation: In an organization, an employee can also be a manage

Binary

Example: Student and Course Relationship

Explanation: A student enrols in multiple courses, and each course is taken by multiple students.

Ternary

Example: Doctor, Patient, and Appointment Relationship

Explanation: In a healthcare system, a doctor may have multiple patients, and each patient may have multiple appointments with different doctors.

- Quaternary

Example: Car, Driver, Insurance Company, and Accident Relationship

Explanation: In the context of car accidents, there is a quaternary relationship involving cars, drivers, insurance companies, and accidents.

Chapter 6: Normalization

Normalization

- Process for evaluating and correcting table structures to minimize data redundancies.

Reduces data anomalies.

- Works through a series of stages called normal forms:
 - First normal form (1NF)
 - Second normal form (2NF)
 - Third normal form (3NF)
- 2NF is better than 1NF; 3NF is better than 2NF
- For most business database design purposes, 3NF is as high as we need to go in normalization process
- Highest level of normalization is not always most desirable.

Why is Normalization Needed?

- Example: Company that manages building projects
 - Charges its clients by billing hours spent on each contract.
 - Hourly billing rate is dependent on employee's position.
 - Periodically, report is generated that contains information displayed in Table 5.1

15	Evergreen	103	June E. Arbough	Elec. Engineer	\$ 85.50	23.8	\$ 2,011.10
		101	John G. News	Database Designer	\$105.00	19.4	\$ 2,037.00
		105	Alice K. Johnson*	Database Designer	\$105.00	35.7	\$ 3,748.50
		106	William Smithfield	Programmer	\$ 35.75	12.6	\$ 450.45
		102	David H. Senior	Systems Analyst	\$ 96.75	23.8	\$ 2,302.65
				Subtotal			\$10,549.70
18	Amber Wave	114	Annelise Jones	Applications Designer	\$ 48.10	25.6	\$ 1,183.26
		118	James J. Frommer	General Support	\$ 18.36	45.3	\$ 831.71
		104	Anne K. Ramoras*	Systems Analyst	\$ 96.75	32.4	\$ 3,135.70
		112	Darlene M. Smithson	DSS Analyst	\$ 45.95	45.0	\$ 2,021.80
				Subtotal			\$ 7,172.47
22	Rolling Tide	105	Alice K. Johnson	Database Designer	\$105.00	65.7	\$ 6,793.50
		104	Anne K. Ramoras	Systems Analyst	\$ 96.75	48.4	\$ 4,682.70
		113	Delbert K. Joenbrood*	Applications Designer	\$ 48.10	23.6	\$ 1,135.16
		111	Geoff B. Wabash	Clerical Support	\$ 26.87	22.0	\$ 591.14
		106	William Smithfield	Programmer	\$ 35.75	12.8	\$ 457.60
				Subtotal			\$13,660.10
25	Starflight	107	Maria D. Alonzo	Programmer	\$ 35.75	25.6	\$ 879.45
		115	Travis B. Bawangi	Systems Analyst	\$ 96.75	45.8	\$ 4,431.15
		101	John G. News*	Database Designer	\$105.00	56.3	\$ 5,911.50
		114	Annelise Jones	Applications Designer	\$ 48.10	33.1	\$ 1,592.11
		108	Ralph B. Washington	Systems Analyst	\$ 96.75	23.6	\$ 2,283.30
		118	James J. Frommer	General Support	\$ 18.36	30.5	\$ 559.98
		112	Darlene M. Smithson	DSS Analyst	\$ 45.95	41.4	\$ 1,902.33
				Subtotal			\$17,559.82
				Total			\$48,942.09

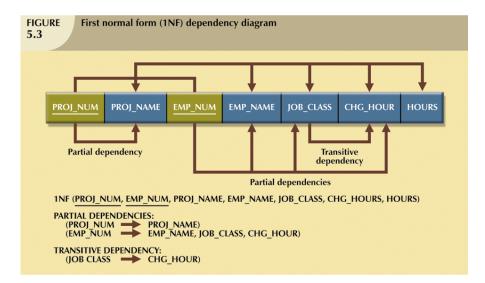
- Structure of data set in Figure 5.1 does not handle data very well.
- The table structure appears to work; report generated with ease.
- Unfortunately, report may yield different results depending on what data anomaly has occurred.
- Each table represents a single subject.
- No data item will be unnecessarily stored in more than one table.
- All attributes in a table are dependent on the primary key.

TABLENormal Forms5.2		
NORMAL FORM	CHARACTERISTIC	SECTION
First normal form (1NF)	Table format; no repeating groups and PK identified	5.3.1
Second normal form (2NF)	1NF and no partial dependencies	5.3.2
Third normal form (3NF)	2NF and no transitive dependencies	5.3.3
Boyce-Codd normal form (BCNF)	Every determinant is a candidate key (special case of 3NF)	5.6.1
Fourth normal form (4NF)	3NF and no independent multivalued dependencies	5.6.2

Conversion For 1NF (First Normal Form)

Repeating group

 Derives its name from the fact that a group of multiple entries of same type can exist for any single key attribute occurrence.


Relational table must not contain repeating groups.

Normalizing table structure will reduce data redundancies.

Normalization is three-step procedure.

- Step 1: Eliminate the Repeating Groups
 - Present data in tabular format, where each cell has single value and there are no repeating groups.
 - Eliminate repeating groups, eliminate nulls by making sure that each repeating group attribute contains an appropriate data value.
- Step 2: Identify the Primary Key
 - Primary key must uniquely identify attribute value.
 - New key must be composed.

- Step 3: Identify All Dependencies
 - Dependencies can be depicted with help of a diagram.
 - Dependency diagram:
 - Depicts all dependencies found within given table structure.
 - Helpful in getting bird's-eye view of all relationships among table's attributes.
 - Makes it less likely that will overlook an important dependency.

First normal form describes tabular format in which:

- All key attributes are defined.
- There are no repeating groups in the table.
- All attributes are dependent on primary key.

All relational tables satisfy 1NF requirements.

Some tables contain partial dependencies.

- Dependencies based on only part of the primary key.
- Sometimes used for performance reasons but should be used with caution.

Still subject to data redundancies

Conversion For 2NF (Second Normal Form)

Relational database design can be improved by converting the database into second normal form (2NF). Two steps.

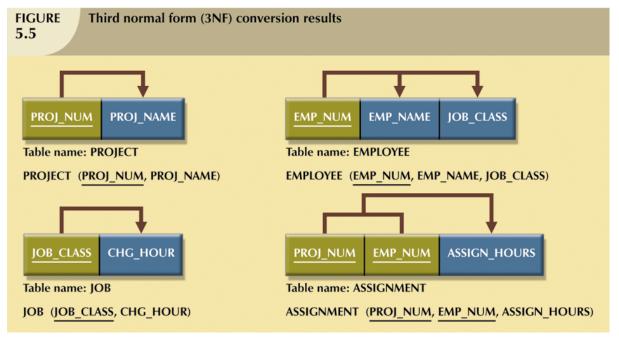

- Step 1: Write Each Key Component on a Separate Line
 - Write each key component on separate line, then write original (composite) key on last line
 - Each component will become key in new table
- Step 2: Assign Corresponding Dependent Attributes
 - Determine those attributes that are dependent on other attributes
 - At this point, most anomalies have been eliminated

FIGURE Second normal form (2NF) c 5.4	onversion results
PROJ_NUM PROJ_NAME	PROJECT (<u>PROJ_NUM</u> , PROJ_NAME)
Table name: EMPLOYEE	EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS, CHG_HOUR)
EMP_NUM EMP_NAME JOB_CLASS	
	ndency
Table name: ASSIGNMENT	ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)
PROJ_NUM EMP_NUM ASSIGN_HO	URS

- Table is in second normal form (2NF) when:
 - It is in 1NF and
 - It includes no partial dependencies:
 - No attribute is dependent on only portion of primary key

Conversion For 3NF (Third Normal Form)

- Data anomalies created are easily eliminated by completing three steps
- Step 1: Identify Each New Determinant
 - For every transitive dependency, write its determinant as PK for new table
 - Determinant :Any attribute whose value determines other values within a row
- Step 2: Identify the Dependent Attributes
 - Identify attributes dependent on each determinant identified in Step 1 and identify dependency
 - Name table to reflect its contents and function
- Step 3: Remove the Dependent Attributes from Transitive Dependencies
 - Eliminate all dependent attributes in transitive relationship(s) from each of the tables that have such a transitive relationship
 - Draw new dependency diagram to show all tables defined in Steps 1–3
 - Check new tables as well as tables modified in Step 3 to make sure that each table has determinant and that no table contains inappropriate dependencies

- A table is in third normal form (3NF) when both of the following are true:
 - It is in 2NF
 - It contains no transitive dependencies

Questions for TOPIC 6:

• What is partial dependency?

Partial dependency occurs in a relational database when a non-prime attribute (an attribute that is not part of any candidate key) is functionally dependent on only a part (proper subset) of a candidate key, rather than the entire key.

• What is transitive dependency? Transitive dependency occurs when an attribute is functionally dependent on another nonprime attribute, which itself is dependent on the primary key.

Given the un-normalized form, normalized it into 3NF

Sales Order

Fiction Company 202 N. Main Mahattan, KS 66502

CustomerNum Customer Nam Customer Add	e: ABC Company	Sales Order Number: Sales Order Date: Clerk Number: Clerk Name: Marta	405 2/1/2000 210 in Lawrence
Item Ordered	Description	Quantity Unit Pri	ce Total
800	widgit small	40 60	.00 2,400.00
801	tingimajigger	20 20	.00 400.00
805	thingibob	10 100	0.00 1,000.00
	Order Total		3,800.00

SalesOrder (Customer Number Custon 1)	e, Customer Address, SalesOrder Number, Sales OrderDATTE,
Clerk Humber Clerk Hum It	e, Customer Address, SalesOrderNumber, Sales OrderDATE,
INF = Table Flattening	Ordered, Description, Quantity, Unit Rice, Total)
PK = Sales Order Number, Item Ordered	
Full Decembercy	
Sales Order Number, Item Ordered -	Questit
Partial Dependency	- Cuantily
Salo Order Number -> Sales Order Dat	e, Clerk Number, Clerk Name, Customer Number, Customer Hame,
Customer Address	C, Cicic Harrison, Clerkiniame, LuslomerNumber, LuslomerName,
Item Ordered -> Description, Unit	Price
ransitive Dependency	
ransitive Dependency krk.Number -> Clert.Name	
stonor Humber -> Customorplame, Custor	m Allyes.

Chapter 7: SQL

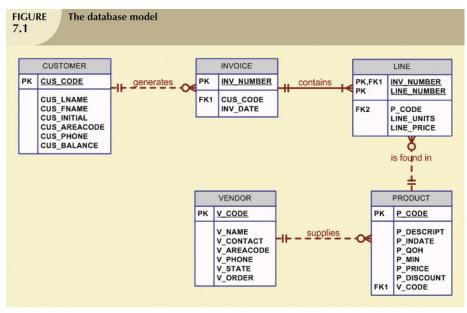
• SQL functions fit into two broad categories:

- Data definition language (DDL)
 - SQL includes commands to:
 - Create database objects, such as tables, indexes, and views.
 - Define access rights to those database objects.
- Data manipulation language (DML)
 - Includes commands to insert, update, delete, and retrieve data within database tables.

American National Standards Institute (ANSI) prescribes a standard SQL

TABLE SQL Data Definition Commands 7.1	
COMMAND OR OPTION	DESCRIPTION
CREATE SCHEMA AUTHORIZATION	Creates a database schema
CREATE TABLE	Creates a new table in the user's database schema
NOT NULL	Ensures that a column will not have null values
UNIQUE	Ensures that a column will not have duplicate values
PRIMARY KEY	Defines a primary key for a table
FOREIGN KEY	Defines a foreign key for a table
DEFAULT	Defines a default value for a column (when no value is given)
CHECK	Constraint used to validate data in an attribute
CREATE INDEX	Creates an index for a table
CREATE VIEW	Creates a dynamic subset of rows/columns from one or more tables
ALTER TABLE	Modifies a table's definition (adds, modifies, or deletes attributes or constraints)
CREATE TABLE AS	Creates a new table based on a query in the user's database schema
DROP TABLE	Permanently deletes a table (and thus its data)
DROP INDEX	Permanently deletes an index
DROP VIEW	Permanently deletes a view

 TABLE


 7.2

SQL Data Manipulation Commands

COMMAND OR OPTION	DESCRIPTION
INSERT	Inserts row(s) into a table
SELECT	Selects attributes from rows in one or more tables or views
WHERE	Restricts the selection of rows based on a conditional expression
GROUP BY	Groups the selected rows based on one or more attributes
HAVING	Restricts the selection of grouped rows based on a condition
ORDER BY	Orders the selected rows based on one or more attributes
UPDATE	Modifies an attribute's values in one or more table's rows
DELETE	Deletes one or more rows from a table
COMMIT	Permanently saves data changes
Rollback	Restores data to their original values

TABLE SQL Data Manipulation Commands (continued) 7.2 7.2	
COMMAND OR OPTION	DESCRIPTION
COMPARISON OPERATORS	
=, <, >, <=, >=, <>	Used in conditional expressions
LOGICAL OPERATORS	
AND/OR/NOT	Used in conditional expressions
SPECIAL OPERATORS	Used in conditional expressions
BETWEEN	Checks whether an attribute value is within a range
IS NULL	Checks whether an attribute value is null
LIKE	Checks whether an attribute value matches a given string pattern
IN	Checks whether an attribute value matches any value within a value list
EXISTS	Checks whether a subquery returns any rows
DISTINCT	Limits values to unique values
AGGREGATE FUNCTIONS	Used with SELECT to return mathematical summaries on columns
COUNT	Returns the number of rows with non-null values for a given column
MIN	Returns the minimum attribute value found in a given column
MAX	Returns the maximum attribute value found in a given column
SUM	Returns the sum of all values for a given column
AVG	Returns the average of all values for a given column

Database Model:

- Authentication
 - Process through which DBMS verifies that only registered users are able to access database
 - Log on to RDBMS using user ID and password created by database administrator
- Schema
 - Group of database objects—such as tables and indexes—that are related to each other

- NOT NULL constraint
 - Ensures that column does not accept nulls
- UNIQUE constraint
 - Ensures that all values in column are unique
- DEFAULT constraint
 - Assigns value to attribute when a new row is added to table
- CHECK constraint
 - Validates data when attribute value is entered
- INSERT
 - Used to enter data into table
 - Syntax:
 - INSERT INTO columnname VALUES (value1, value2, ..., valuen);
- Changes made to table contents are not physically saved on disk until, one of the following occurs:
 - Database is closed
 - Program is closed
 - COMMIT command is used
- Syntax:
 - COMMIT [WORK];

Will permanently save any changes made to any table in the database

- SELECT
 - Used to list contents of table
 - Syntax:
 - SELECT columnlist FROM tablename;
- Asterisk can be used as wildcard character to list all attributes
- UPDATE
 - Modify data in a table
 - Syntax:

- UPDATE tablename
 SET columnname = expression [, columname = expression]
 [WHERE conditionlist];
- ROLLBACK
 - Used to restore database to its previous condition
 - Only applicable if COMMIT command has not been used to permanently store changes in database
- Syntax:
 - ROLLBACK;
- COMMIT and ROLLBACK only work with data manipulation commands that are used to add, modify, or delete table rows
- DELETE
 - Deletes a table row
 - Syntax:
 - DELETE FROM tablename [WHERE conditionlist];
- WHERE condition is optional
- If WHERE condition is not specified, all rows from specified table will be deleted
- INSERT
 - Inserts multiple rows from another table (source)
 - Uses SELECT subquery
 - Query that is embedded (or nested) inside another query
 - Executed first
 - Syntax:
 - INSERT INTO tablename SELECT columnlist FROM tablename;
- BETWEEN
 - Used to check whether attribute value is within a range
- IS NULL
 - Used to check whether attribute value is null
- LIKE
 - Used to check whether attribute value matches given string pattern
- IN
- Used to check whether attribute value matches any value within a value list

- EXISTS
 - Used to check if subquery returns any rows
- All changes in table structure are made by using ALTER command
 - Followed by keyword that produces specific change
 - Following three options are available:
 - ADD
 - MODIFY
 - DROP
- When table is copied, integrity rules do not copy, so primary and foreign keys need to be manually defined on new table
- User ALTER TABLE command
 - Syntax:
 - ALTER TABLE tablename ADD PRIMARY KEY(fieldname);
 - For foreign key, use FOREIGN KEY in place of PRIMARY KEY
- DROP
 - Deletes table from database
 - Syntax:
 - DROP TABLE tablename;

Inner Join:

Returns only the rows where there is a match in both tables based on the specified condition.

Rows from the tables that do not satisfy the condition are excluded from the result set.

Example:

SELECT * FROM Table1 INNER JOIN Table2 ON Table1.ID = Table2.ID;

Left Join (or Left Outer Join):

Returns all rows from the left table and the matched rows from the right table.

If there is no match in the right table, NULL values are returned for columns from the right table.

Example:

SELECT * FROM Table1 LEFT JOIN Table2 ON Table1.ID = Table2.ID;

Right Join (or Right Outer Join):

Returns all rows from the right table and the matched rows from the left table.

If there is no match in the left table, NULL values are returned for columns from the left table.

Example:

SELECT * FROM Table1 RIGHT JOIN Table2 ON Table1.ID = Table2.ID;

Full Join (or Full Outer Join):

Returns all rows when there is a match in either the left or right table.

If there is no match in one of the tables, NULL values are returned for columns from the table without a match.

Example:

SELECT * FROM Table1 FULL JOIN Table2 ON Table1.ID = Table2.ID;

Inner Join returns matched rows.

Left Join returns all rows from the left table and matched rows from the right table.

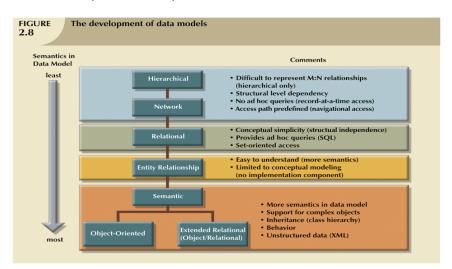
Right Join returns all rows from the right table and matched rows from the left table.

Full Join returns all rows when there is a match in either the left or right table.

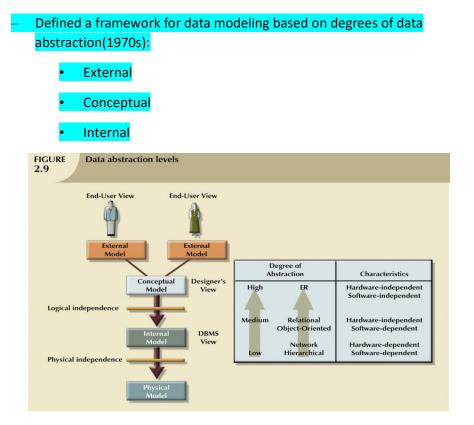
Questions for Topic 7:

•

- Describe the difference between DDL & DML
 - Data definition language (DDL)

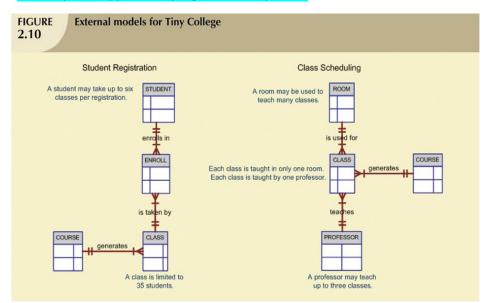

SQL includes commands to:

- Create database objects, such as tables, indexes, and views.
- Define access rights to those database objects.
- Data manipulation language (DML)


Includes commands to insert, update, delete, and retrieve data within database tables.

Chapter 8: Extended Entity Relationship Model

٠

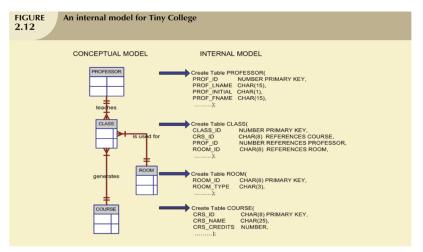


American National Standards Institute (ANSI) Standards Planning and Requirements Committee (SPARC)

The External Model: End users' view of the data environment

- Advantages:
 - Easy to identify specific data required to support each business unit's operations.
 - Facilitates designer's job by providing feedback about the model's adequacy.
 - Creation of external models helps to ensure security constraints in the database design.
 - Simplifies application program development.

The Conceptual Model:


- Represents global view of the entire database
- Basis for identification and high-level description of main data objects, avoiding details
- Most widely used conceptual model is the entity relationship (ER) model

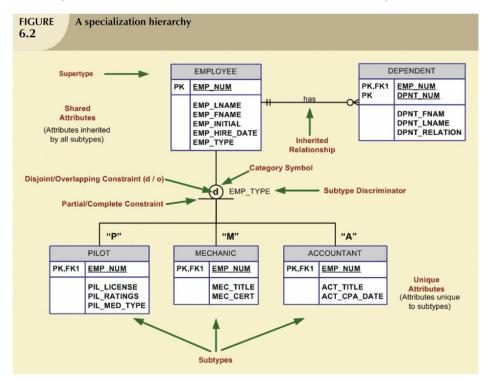
- Provides a relatively easily understood macro level view of data environment
- Independent of both software and hardware
 - Does not depend on the DBMS software used to implement the model
 - Does not depend on the hardware used in the implementation of the model

The Internal Model:

- Representation of the database as "seen" by the DBMS
- Maps the conceptual model to the DBMS
- Internal schema depicts a specific representation of an internal model

The Physical Model:

- Operates at lowest level of abstraction, describing the way data are saved on storage media such as disks or tapes
- Software and hardware dependent


TABLE Levels of Data Abstraction 2.3								
MODEL	DEGREE OF Abstraction	FOCUS	INDEPENDENT OF					
External	High	End-user views	Hardware and software					
Conceptual	1	Global view of data (independent of database model)	Hardware and software					
Internal	•	Specific database model	Hardware					
Physical	Low	Storage and access methods	Neither hardware nor software					

Entity Supertypes and Subtypes

- Entity supertype
 - Generic entity type that is related to one or more entity subtypes
 - Contains common characteristics
- Entity subtypes
 - Contains unique characteristics of each entity subtype

Specialization Hierarchy:

- Depicts arrangement of higher-level entity supertypes (parent entities) and lower-level entity subtypes (child entities)
- Relationships sometimes described in terms of "IS-A" relationships

- Support attribute inheritance
- Define special supertype attribute known as subtype discriminator
- Define disjoint/overlapping constraints and complete/partial constraints

Inheritance:

- Enables entity subtype to inherit attributes and relationships of supertype
- All entity subtypes inherit their primary key attribute from their supertype
- At implementation level, supertype and its subtype(s) depicted in specialization hierarchy maintain a 1:1 relationship

3	URI		The			upertype-s	ubtype rei	ation	sinp			
ā	able Name: EMPLOYEE					Table Name: PILOT						
Т	EMP_N	JUM	EMP_LNAME	EMP_FNAME	EMP_INITIAL	EMP_HIRE_DATE	EMP_TYPE		EMP_NUM	PIL_LICENSE	PIL_RATINGS	PIL_MED_TYP
•		100	Kolmycz	Xavier	T	15-Mar-88			101	ATP	SELMEL/Instr/CFII	1
	N	101	Lewis	Marcos		25-Apr-89	P		104	ATP	SELMELAnstr	1
	13	102	Vandam	Jean		20-Dec-93	A		105	COM	SEL/MEL/Instr/CFI	2
		103	Jones	Victoria	R	28-Aug-03			106	COM	SELMELInstr	2
		104	Lange	Edith		20-Oct-97	P		109	COM	SEL/MEL/SES/Instr/CFI	1
		105	v∿illiams	Gabriel	U	08-Nov-97	P					
		106	Duzak	Mario		05-Jan-04	P					
		107	Diante	Venite	L	02-Jul-97	M					
		108	Wesenbach	Joni		18-Nov-95	M					
		109	Travis	Brett	T	14-Apr-01	P					
		110	Genkazi	Stan		01-Dec-03	۵					

Subtype Discriminator: The attribute in supertype entity that determines to which entity subtype each supertype occurrence is related

Disjoint subtypes

- Also known as non-overlapping subtypes
- Subtypes that contain unique subset of supertype entity set

Overlapping subtypes

Subtypes that contain nonunique subsets of supertype entity set

Completeness Constraint:

- Specifies whether each entity supertype occurrence must also be member of at least one subtype
- Can be partial or total

Specialization and Generalization:

- Specialization
 - Top-down process of identifying lower-level, more specific entity subtypes from higher-level entity supertype
 - Based on grouping unique characteristics and relationships of the subtypes
- Generalization
 - Bottom-up process of identifying higher-level, more generic entity supertype from lower-level entity subtypes
 - Based on grouping common characteristics and relationships of the subtypes

Chapter 9: Database Dev Life Cycle

The Information System:

- Provides for data collection, storage, and retrieval
- Composed of people, hardware, software, database(s), application programs, and procedures
- Systems analysis
 - Process that establishes need for and extent of information system
- Systems development
 - Process of creating information system
- Applications
 - Transform data into information that forms basis for decision making
 - Usually produce the following:
 - Formal report
 - Tabulations
 - Graphic displays
 - Composed of following two parts:
 - Data
 - Code by which data are transformed into information
- Information system performance depends on triad of factors:
 - Database design and implementation
 - Application design and implementation
 - Administrative procedures
- Database development
 - Process of database design and implementation
 - Primary objective is to create complete, normalized, nonredundant (to the extent possible), and fully integrated conceptual, logical, and physical database models

The Systems Development Life Cycle (SDLC):

FIGURE 9.2	The Systems Develop	ment Life C	Sycle (SDLC)	
	Phase		Action(s)	Section
F	Planning	8	Initial assessment Feasibility study	9.2.1
⊩	Analysis		User requirements Existing system evaluation Logical system design	9.2.2
⊩	Detailed systems design	۲	Detailed system specification	9.2.3
⊩	Implementation	8	Coding, testing, and debugging Installation, fine-tuning	9.2.4
Ľ	Maintenance		Evaluation Maintenance Enhancement	9.2.5

- Traces history (life cycle) of information system
- Provides "big picture" within which database design and application development can be mapped out and evaluated

Divided into following five phases:

Planning

- Yields general overview of company and its objectives.
- Initial assessment made of information-flow-and-extent requirements.
- Must begin to study and evaluate alternate solutions.
 - Technical aspects of hardware and software requirements
 - System cost

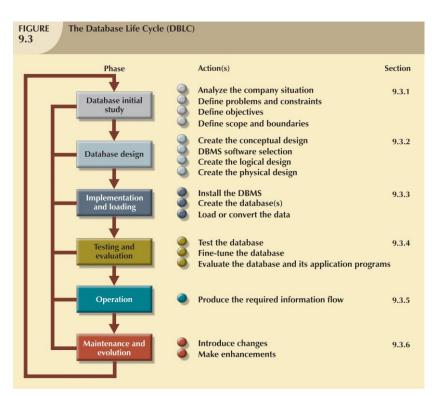
Analysis

- Problems defined during planning phase are examined in greater detail during analysis
- Thorough audit of user requirements
- Existing hardware and software systems are studied.
- Goal is better understanding of system's functional areas, actual and potential problems, and opportunities.
- Includes creation of logical system design
- Must specify appropriate conceptual data model, inputs, processes, and expected output requirements

- Might use tools such as data flow diagrams (DFDs), hierarchical input process output (HIPO) diagrams, and entity relationship (ER) diagrams
- Yields functional descriptions of system's components (modules) for each process within database environment

Detailed systems design

- Designer completes design of system's processes.
- Includes all necessary technical specifications.
- Steps are laid out for conversion from old to new system.
- Training principles and methodologies are also planned.

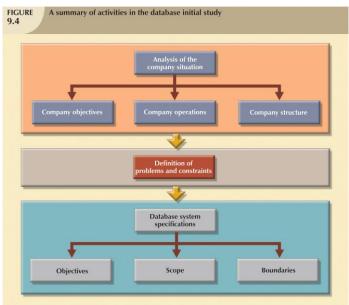

Implementation

- Hardware, DBMS software, and application programs are installed, and database design is implemented
- Cycle of coding, testing, and debugging continues until database is ready to be delivered
- Database is created and system is customized by creation of tables and views, and user authorizations

Maintenance

- Maintenance activities group into three types:
 - Corrective maintenance in response to systems errors
 - Adaptive maintenance due to changes in business environment
 - Perfective maintenance to enhance system
- Computer-assisted systems engineering
 - Make it possible to produce better systems within reasonable amount of time and at reasonable cost

Iterative rather than sequential process



Overall purpose:

- Analyze company situation
- Define problems and constraints
- Define objectives
- Define scope and boundaries

Interactive and iterative processes required to complete first phase of DBLC successfully.

The Database Initial Study:

Analyze the Company Situation:

- Analysis—To break up any whole into its parts so as to find out their nature, function, and so on
- Company situation
 - General conditions in which company operates, its organizational structure, and its mission
- Analyze company situation
 - Discover what company's operational components are, how they function, and how they interact

Define Problems and Constraints:

- Managerial view of company's operation is often different from that of end users
- Designer must continue to carefully probe to generate additional information that will help define problems within larger framework of company operations
- Finding precise answers is important
- Defining problems does not always lead to perfect solution

Define Objectives:

- Designer must ensure that database system objectives correspond to those envisioned by end user(s)
- Designer must begin to address following questions:
 - What is proposed system's initial objective?
 - Will system interface with other existing or future systems in the company?
 - Will system share data with other systems or users?

Define Scope and Boundaries:

- Scope
 - Defines extent of design according to operational requirements
 - Helps define required data structures, type and number of entities, and physical size of database
- Boundaries
 - Limits external to system
 - Often imposed by existing hardware and software

QUESTIONS THAT MAY COME OUT + ANSWERS (MEMORISE THIS SHIT DAWG)

Staff (Staff_ID, Name, Gender, Address, MonthlySalary, Dept_ID) Department (Dept_ID, Name, Phone_Extension)

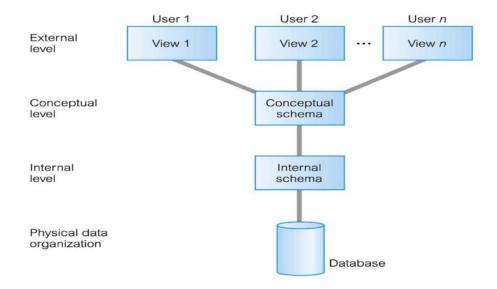
Based on the relations above, write structured query language (SQL) for the queries given below.

a) List all male staff who earn below 4000 from 'Marketing' department

```
SELECT
       Staff.Staff_ID,
        Staff.Name,
       Staff.Gender,
       Staff.Address
        Staff.MonthlySalary,
       Department.Name AS DepartmentName
   FROM
       Staff
   JOIN
       Department ON Staff.Dept_ID = Department.Dept_ID
   WHERE
       Staff.Gender = 'Male'
       AND Staff.MonthlySalary < 4000
       AND Department.Name = 'Marketing';
                                                                                 (3 marks)
b) Find the total number of staff from each department
   SELECT
        Department.Name AS DepartmentName,
       COUNT(*) AS TotalStaff
   FROM
        Staff
   JOIN
        Department ON Staff.Dept_ID = Department.Dept_ID
   GROUP BY
       Department.Name;
                                                                                 (3 marks)
c) What is the average annual salary of a staff in the company?
   SELECT
        AVG(MonthlySalary) AS AverageAnnualSalary
   FROM
       Staff;
                                                                                 (3 marks)
d) Add a new department named Sales (D04), phone extension is 5014
   INSERT INTO Department (Dept_ID, Name, Phone_Extension)
   VALUES ('D04', 'Sales', '5014');
                                                                                 (3 marks)
e) The staff have been given 10% of increment in salary, modify this in the record
   UPDATE Staff
   SET MonthlySalary = MonthlySalary * 1.1;
                                                                                 (3 marks)
f) Staff named Ricky has changed address from Johor Bharu to Sri Petaling, make these changes
   UPDATE Staff
   SET Address = 'Sri Petaling'
   WHERE Name = 'Ricky' AND Address = 'Johor Bharu';
                                                                                (3 marks)
```

g) Staff named Eugene had resigned from the company, delete his record.

```
DELETE FROM Staff
WHERE Name = 'Eugene';
```


h) Write SQL DDL to create Staff table above

```
CREATE TABLE Staff (
Staff_ID INT PRIMARY KEY,
Name NVARCHAR(255),
Gender NVARCHAR(10),
Address NVARCHAR(255),
MonthlySalary DECIMAL(10, 2),
Dept_ID NVARCHAR(50),
CONSTRAINT fk_Dept FOREIGN KEY (Dept_ID) REFERENCES Department(Dept_ID)
);
```

(4 marks) (Total: 25 marks)

(3 marks)

2) Using an appropriate diagram, briefly explain the three levels of data abstraction in the ANSI-SPARC database architecture.

At the external level, users access the database through customized views, which present a tailored subset of data to meet specific user or group needs. Views simplify user interactions by hiding unnecessary details of the database structure, allowing users to focus on their specific requirements.

The conceptual level defines the logical structure of the entire database, outlining what data is stored, how it's related, and any integrity constraints. It provides a high-level abstraction, independent of physical storage details. Database administrators and designers work at this level to create a schema used by all users, focusing on the overall organization and relationships within the data.

The internal level handles the physical storage and access methods for data, addressing aspects like storage structures and formats. It emphasizes optimizing performance and storage efficiency. The database management system (DBMS) translates the logical schema to the physical schema for storage and retrieval. Users and application developers usually don't interact directly with the internal level; the DBMS takes care of managing these details.